Mesos

A Platform for Fine-Grained Resource
Sharing in the Data Center

Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony Joseph, Randy Katz, Scott Shenker, lon Stoica

University of California, Berkeley

lab

Background

Rapid innovation in cluster computing frameworks

S distributed stream
computing platform

Channels M M < tices

s & (GOOGle >z 27
A" 4 A" 4
Dryad Percolator ‘q M; i ——

N

Problem

Rapid innovation in cluster computing frameworks

No single framework optimal for all applications

Want to run multiple frameworks in a single cluster

» ...to maximize utilization
» ...to share data between frameworks

Where We Want to Go

Today: static partitioning Mesos: dynamic sharing

100%

o%

ig

g
e

Shared cluster

Solution

Mesos is a common resource sharing layer over
which diverse frameworks can run

e

Hadoop

o

I

2 e 0

Other Benefits of Mesos

Run multiple instances of the same framework
» |solate production and experimental jobs
» Run multiple versions of the framework concurrently

Build specialized frameworks targeting particular

problem domains
» Better performance than general-purpose abstractions

Outline

[Mesos Goals and Architecture

Implementation
Results

Related Work

Mesos Goals

High utilization of resources

Support diverse frameworks (current & future)
Scalability to 10,000's of nodes

Reliability in face of failures
4)
Resulting design: Small microkernel-like core

. that pushes scheduling logic to frameworks)

Design Elements

Fine-grained sharing:
» Allocation at the level of tasks within a job
» Improves utilization, latency, and data locality

Resource offers:
» Simple, scalable application-controlled scheduling
mechanism

Element 1: Fine-Grained Sharing

Coarse-Grained Sharing (HPC): Fine-Grained Sharing (Mesos):

Storage System (e.qg. HDFS) Storage System (e.g. HDFS)

+ Improved utilization, responsiveness, data locality

Element 2: Resource Offers

Option: Global scheduler
» Frameworks express needs in a specification language,
global scheduler matches them to resources

+ Can make optimal decisions

— Complex: language must support all framework needs
— Difficult to scale and to make robust

— Future frameworks may have unanticipated needs

Element 2: Resource Offers

Mesos: Resource offers
» Offer available resources to frameworks, let them pick
which resources to use and which tasks to launch

+ Keeps Mesos simple, lets it support future frameworks
— Decentralized decisions might not be optimal

31 292725232119 1715 B 1N 975 3 1
A A _ A
- 1133333333311 1 véé‘i%‘:’:mxa%%’?“ -
44 peeePP T esoeeeeeee e 1313111140
‘N ECE I - CEEECE N DY secepeeeeeDE S D
133:°331- 3331 1 Doy o 30000 BF n“*’l;%
2222333233323 2333 a0 101111180 0
m B O O R DO D B spooeoeele s @
e e 3 2 3394433333333) 13333133173 >
v it 2 R R-R- R B NR- 3)34_ SO0 BEEBK " K
v <
32 3028 26 24 2220 1816 4 1210 8 6 4 2

V¥ Video Screen A Exit Cllﬂ)

Mesos Architecture

MPI job Hadoop job
I I
MPI Hadoop
scheduler scheduler

-

n

Allg
m

. B Pick framework to
Resourc;\L offer resources to

|

offer

N\

Mesos slave

Mesos slave

executor

MPI

executor

MPI

task

task

Mesos Architecture

MPI job Hadoop job
I I
MPI Hadoop
scheduler scheduler
N e

Resource offer =

list of (node, availableResources) framework to

"resources to

E.g. {(nodez, <2 CPUs, 4 GB>),
(node2, <3 CPUs, 2 GB>)}

X
Mesos slave Mesos slave
I MPI MPI I

I I
I !| executor executor ! I
I I
I I

| task task |

Mesos Architecture

MPI job
I
MPI
scheduler

N

Hadoop job

I

Hadonnn

sch task

ﬁ

-

Framework-specific
scheduling

Pick framework to
offer resources to

Mesos @ Allc —* h
Resource
m
offer
Mesos slave Mesos slave ﬁ
I I MPI Hadoop
1 | executor executor | executor

task

Launches and
isolates executors

|

Optimization: Filters

Let frameworks short-circuit rejection by

providing a predicate on resources to be offered
» E.g. "nodes from list L” or "nodes with > 8 GB RAM”
» Could generalize to other hints as well

Ability to reject still ensures correctness when
needs cannot be expressed using filters

Implementation

Implementation Stats

20,000 lines of C++
Master failover using ZooKeeper

Frameworks ported: Hadoop, MP

, Torque

New specialized framework: Spar
(up to 20x faster than Hadoop)

Open source in Apache Incubator

, for iterative jobs

Apache
meubn:or

Users

Twitter uses Mesos on > 100 nodes to run ~12
production services (mostly stream processing)

Berkeley machine learning researchers are
running several algorithms at scale on Spark

Conviva is using Spark for data analytics

UCSF medical researchers are using Mesos to
run Hadoop and eventually non-Hadoop apps

Results

» Utilization and performance vs static partitioning
» Framework placement goals: data locality
» Scalability

» Fault recovery

Share of Cluster CPUs

Dynamic Resource Sharing

1

0.8
0.6
0.4
0.2
0
0 200 Tzfoo TGoo 800 1000 1200 1400 1600
Time (s)
Spark Facebook Hadoop Mix

Large Hadoop Mix s Torque /[MPI

Mesos vs Static Partitioning

Compared performance with statically partitioned
cluster where each framework gets 25% of nodes

Framework Speedup on Mesos

Facebook Hadoop Mix 1.14X
Large Hadoop Mix 2.10X
Spark 1.26%
Torque /| MPI 0.96x%

Data Locality with Resource Offers

Ran 16 instances of Hadoop on a shared HDFS cluster

Used delay scheduling [EuroSys ‘10] in Hadoop to get
locality (wait a short time to acquire data-local nodes)

Local Map Tasks (%) Job Duration (s)
100% 600
80% ‘ 500 | 11.7)(
60% | 400 |
o% 300
4070 200
20% ‘ 100
0% o I —
Static Mesos Static Mesos

Partitioning Partitioning

Scalability

Mesos only performs inter-framework scheduling (e.g. fair
sharing), which is easier than intra-framework scheduling

Result: s
Scaled to 50,000 ® 08
emulated slaves, £ o6
>
200 frameworks, S,
S o.
100K tasks (3oslen) = ;
& 0.2
=
Ir_u (0]

O 10000 20000 30000 40000 50000
Number of Slaves

Fault Tolerance

Mesos master has only soft state: list of
currently running frameworks and tasks

Rebuild when frameworks and slaves re-register
with new master after a failure

Result: fault detection and recovery in ~10 sec

Related Work

HPC schedulers (e.g. Torque, LSF, Sun Grid Engine)
» Coarse-grained sharing for inelastic jobs (e.g. MPI)

Virtual machine clouds
» Coarse-grained sharing similar to HPC

Condor
» Centralized scheduler based on matchmaking

Parallel work: Next-Generation Hadoop
» Redesign of Hadoop to have per-application masters
» Also aims to support non-MapReduce jobs
» Based on resource request language with locality prefs

Conclusion

Mesos shares clusters efficiently among diverse

frameworks thanks to two design elements:
» Fine-grained sharing at the level of tasks
» Resource offers, a scalable mechanism for
application-controlled scheduling

Enables co-existence of current frameworks and
development of new specialized ones

In use at Twitter, UC Berkeley, Conviva and UCSF

Backup Slides

Framework Isolation

Mesos uses OS isolation mechanisms, such as
Linux containers and Solaris projects

Containers currently support CPU, memory, IO
and network bandwidth isolation

Not perfect, but much better than no isolation

Analysis

Resource offers work well when:
» Frameworks can scale up and down elastically
» Task durations are homogeneous
» Frameworks have many preferred nodes

These conditions hold in current data analytics

frameworks (MapReduce, Dryad, ...)
» Work divided into short tasks to facilitate load
balancing and fault recovery
» Data replicated across multiple nodes

Revocation

Mesos allocation modules can revoke (kill) tasks
to meet organizational SLOs

Framework given a grace period to clean up

“"Guaranteed share” APl lets frameworks avoid
revocation by staying below a certain share

Mesos API

resourceOffer(offerld, offers) || replyToOffer(offerld, tasks)

offerRescinded(offerld) setNeedsOffers(bool)
statusUpdate(taskld, status) setFilters(filters)
slaveLost(slaveld) getGuaranteedShare()

kil Task(taskld)

Executor Callbacks Executor Actions

launchTask(taskDescriptor) sendStatus(taskld, status)
kil Task(taskld)

