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What i1s Spark?

Not a modified version of Hadoop

Separate, fast, MapReduce-like engine
» In-memory data storage for very fast iterative queries
» General execution graphs and powerful optimizations
» Up to 4ox faster than Hadoop

Compatible with Hadoop’s storage APlIs

» Can read/write to any Hadoop-supported system,
including HDFS, HBase, SequenceFiles, etc



What is Shark?

Port of Apache Hive to run on Spark

Compatible with existing Hive data, metastores,
and queries (HiveQL, UDFs, etc)

Similar speedups of up to 40x



Project History

Spark project started in 2009, open sourced 2010

Shark started summer 2011, alpha April 2012

In use at Berkeley, Princeton, Klout, Foursquare,
Conviva, Quantifind, Yahoo! Research & others

200+ member meetup, 5oo+ watchers on GitHub



This Talk

Spark programming model
User applications

Shark overview

Demo

Next major addition: Streaming Spark



Why a New Programming Model?

MapReduce greatly simplified big data analysis

But as soon as it got popular, users wanted more:
» More complex, multi-stage applications (e.g.

iterative graph algorithms and machine learning)
» More interactive ad-hoc queries

Both multi-stage and interactive apps require
faster data sharing across parallel jobs



Data Sharing in MapReduce
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Slow due to replication, serialization, and disk IO
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Spark Programming Model

Key idea: resilient distributed datasets (RDDs)
» Distributed collections of objects that can be cached
in memory across cluster nodes
» Manipulated through various parallel operators
» Automatically rebuilt on failure

Interface
» Clean language-integrated API in Scala
» Can be used interactively from Scala console



Example: Log Mining

Load error messages from a log into memory, then
interactively search for various patterns

lines = spark.textFile(“hdfs://...")
errors = lines.filter(_.startswith(“ERROR"))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.cache()

cachedMsgs.filter(_.contains(“foo”)).count

cachedmsgs.filter(_.contains(“bar”)).count

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)




Fault Tolerance

RDDs track the series of transformations used to
build them (their lineage) to recompute lost data

Eg messages = textFile(...).filter(_.contains(“error”))
.map(_.split(‘\t’)(2))

HadoopRDD . FilteredRDD . MappedRDD
path = hdfs://... func = _.contains(...) func = _.split(...)



Example: Logistic Regression

val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (1 <- 1 to ITERATIONS) {
val gradient = data.map(p =>
(1 / (A + exp(-p.y*(w dot p.x))) - 1) * p.y * p.X
).reduce(_ + _)
w -= gradient

}

printin("Final w: " + w)



Logistic Regression Performance
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Supported Operators

map
filter
groupBy

sort

join
leftOuterloin

rightouterJoin

reduce
count
reduceByKey
groupByKey
first

union

Cross

sample
cogroup
take
partitionBy
pipe

save



Other Engine Features

General graphs of operators (e.g. map-reduce-reduce)
Hash-based reduces (faster than Hadoop's sort)

Controlled data partitioning to lower communication

PageRank Performance
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Spark Users
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User Applications

In-memory analytics & anomaly detection (Conviva)
Interactive queries on data streams (Quantifind)

Exploratory log analysis (Foursquare)

Traffic estimation w/ GPS data (Mobile Millennium)

Twitter spam classification (Monarch)



Conviva GeoReport
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Group aggregations on many keys w/ same filter

£,0x gain over Hive from avoiding repeated
reading, deserialization and filtering



Mobile Millennium Project

Estimate city traffic from crowdsourced GPS data

Iterative EM algorithm
scaling to 160 nodes
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Shark: Hive on Spark



Motivation

Hive is great, but Hadoop’s execution engine
makes even the smallest queries take minutes

Scalais good for programmers, but many data
users only know SQL

Can we extend Hive to run on Spark?



Hive Architecture
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Shark Architecture

CLI JDBC

Driver | Cache Mgr.

Query nysical Plan

Optimizer Execution

[Engle et al, SIGMOD 2012]



Efficient In-Memory Storage

Simply caching Hive records as Java objects is
inefficient due to high per-object overhead

Instead, Shark employs column-oriented
storage using arrays of primitive types

Row Storage Column Storage




Efficient In-Memory Storage
Simply caching Hive records as Java objects is
inefficient due to high per-object overhead

Instead, Shark employs column-oriented
storage using arrays of primitive types

Benefit: similarly compact size to serialized data,
but >5x faster to access



Using Shark

CREATE TABLE mydata_cached AS SELECT ..

Run standard HiveQL on it, including UDFs

» A few esoteric features are not yet supported

Can also call from Scala to mix with Spark

[ Early alpha release at shark.cs.berkeley.edu ]




Benchmark Query 1

SELECT * FROM grep WHERE field LIKE *‘%XYZ%’;

Shark (cached) [PE
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Benchmark Query 2

SELECT sourceIP, AVG(pageRank), SuM(adRevenue) AS earnings
FROM rankings AS R, uservVisits AS V ON R.pageURL = V.destURL
WHERE V.visitDate BETWEEN ‘1999-01-01" AND ‘2000-01-01’
GROUP BY V.sourceIP

ORDER BY earnings DESC

LIMIT 1;

Shark (cached)
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Execution Time (secs)



Demo



What’'s Next?

Recall that Spark’s model was motivated by two
emerging uses (interactive and multi-stage apps)

Another emerging use case that needs fast data

sharing is stream processing
» Track and update state in memory as events arrive
» Large-scale reporting, click analysis, spam filtering, etc



Streaming Spark

Extends Spark to perform streaming computations

Runs as a series of small (~1s) batch jobs, keeping
state in memory as fault-tolerant RDDs

Intermix seamlessly with batch and ad-hoc queries

map reduceByWindow

tweetStream T=1
.flatmap(_.toLower.split)
.map(word => (word, 1))
.reduceBywindow(“5s”, _ + _) =
T=2

[Zaharia et al, HotCloud 2012]



Streaming Spark

Extends Spark to perform streaming computations

Runs as a series of small (~1s) batch jobs, keeping
state in memory as fault-tolerant RDDs

Intermix seamlessly with batch and ad-hoc queries

Result: can process 42 million records/second
(4 GB/s) on 100 nodes at sub-second latency



Streaming Spark

Extends Spark to perform streaming computations

Runs as a series of small (~1s) batch jobs, keeping
state in memory as fault-tolerant RDDs

Intermix seamlessly with batch and ad-hoc queries

Alpha coming this summer



Conclusion

Spark and Shark speed up your interactive and
complex analytics on Hadoop data

Download and docs: www.spark-project.org
» Easy to run locally, on EC2, or on Mesos and soon YARN

User meetup: meetup.com/spark-users

Training camp at Berkeley in August!

matei@berkeley.edu / @matei_zaharia



Behavior with Not Enough RAM
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Software Stack

Shark Bagel reaming
(Hive on Spark) [ (Pregel on Spark) Spark

Local ECo Apache VARN
mode Mesos




