Spark and Shark

High-Speed In-Memory Analytics
over Hadoop and Hive Data

Matei Zaharia, in collaboration with

Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Cliff Engle,
Michael Franklin, Haoyuan Li, Antonio Lupher, Justin Ma, Murphy
McCauley, Scott Shenker, lon Stoica, Reynold Xin

UC Berkeley Ia b

spark-project.orq

What i1s Spark?

Not a modified version of Hadoop

Separate, fast, MapReduce-like engine
» In-memory data storage for very fast iterative queries
» General execution graphs and powerful optimizations
» Up to 4ox faster than Hadoop

Compatible with Hadoop’s storage APlIs

» Can read/write to any Hadoop-supported system,
including HDFS, HBase, SequenceFiles, etc

What is Shark?

Port of Apache Hive to run on Spark

Compatible with existing Hive data, metastores,
and queries (HiveQL, UDFs, etc)

Similar speedups of up to 40x

Project History

Spark project started in 2009, open sourced 2010

Shark started summer 2011, alpha April 2012

In use at Berkeley, Princeton, Klout, Foursquare,
Conviva, Quantifind, Yahoo! Research & others

200+ member meetup, 5oo+ watchers on GitHub

This Talk

Spark programming model
User applications

Shark overview

Demo

Next major addition: Streaming Spark

Why a New Programming Model?

MapReduce greatly simplified big data analysis

But as soon as it got popular, users wanted more:
» More complex, multi-stage applications (e.g.

iterative graph algorithms and machine learning)
» More interactive ad-hoc queries

Both multi-stage and interactive apps require
faster data sharing across parallel jobs

Data Sharing in MapReduce

HDFS HDFS HDFS HDFS
read write read write
Input
HDFS —> rESUItl
read
—> result 2

result 3
Input

]

Slow due to replication, serialization, and disk IO

Da
ta S
haﬁngin
S
park

\\\\\\\\\\\\\\\\\\\\\\\\

e Al
\\\\\\\\\\\\\\\\\\“\\\\\\‘

W

\\\\\\\\»\\\&\

A \\\\\\\\\\\\

Input

on
roe-.tinne
r
r

Dis
trlb
ut
memors,d

10
-100
x f
aste
r
than net
w
ork
and
disk

Spark Programming Model

Key idea: resilient distributed datasets (RDDs)
» Distributed collections of objects that can be cached
in memory across cluster nodes
» Manipulated through various parallel operators
» Automatically rebuilt on failure

Interface
» Clean language-integrated API in Scala
» Can be used interactively from Scala console

Example: Log Mining

Load error messages from a log into memory, then
interactively search for various patterns

lines = spark.textFile(“hdfs://...")
errors = lines.filter(_.startswith(“ERROR"))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.cache()

cachedMsgs.filter(_.contains(“foo”)).count

cachedmsgs.filter(_.contains(“bar”)).count

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)

Fault Tolerance

RDDs track the series of transformations used to
build them (their lineage) to recompute lost data

Eg messages = textFile(...).filter(_.contains(“error”))
.map(_.split(‘\t’)(2))

HadoopRDD . FilteredRDD . MappedRDD
path = hdfs://... func = _.contains(...) func = _.split(...)

Example: Logistic Regression

val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (1 <- 1 to ITERATIONS) {
val gradient = data.map(p =>
(1 / (A + exp(-p.y*(w dot p.x))) - 1) * p.y * p.X
).reduce(_ + _)
w -= gradient

}

printin("Final w: " + w)

Logistic Regression Performance

4500
4000

3500
g 3000
= 2500
2000
1500
1000
500
o)

Running

5 10 20
Number of Iterations

127 s/ iteration

/

Hadoop
W Spark

\

first iteration 174 s

further iterations 6 s
30

Supported Operators

map
filter
groupBy

sort

join
leftOuterloin

rightouterJoin

reduce
count
reduceByKey
groupByKey
first

union

Cross

sample
cogroup
take
partitionBy
pipe

save

Other Engine Features

General graphs of operators (e.g. map-reduce-reduce)
Hash-based reduces (faster than Hadoop's sort)

Controlled data partitioning to lower communication

PageRank Performance

% 200 1? Hadoop

£ 150

o .

£ 100 22 W Basic Spark

-; :I:

T 50 23 Spark + Controlled
t =

Partitioning

@)

Spark Users

CON S foursquare

CIuantlFlnd I{KLOUT YaHOO!

RESEARCH

Berkeley @Ry UGSE

User Applications

In-memory analytics & anomaly detection (Conviva)
Interactive queries on data streams (Quantifind)

Exploratory log analysis (Foursquare)

Traffic estimation w/ GPS data (Mobile Millennium)

Twitter spam classification (Monarch)

Conviva GeoReport

Hive 20

Spark | o.5

Time (hours)
0 5 10 15 20

Group aggregations on many keys w/ same filter

£,0x gain over Hive from avoiding repeated
reading, deserialization and filtering

Mobile Millennium Project

Estimate city traffic from crowdsourced GPS data

Iterative EM algorithm
scaling to 160 nodes

] B Mstep
K 2 4000 == Shuffle step

2] 1 Estep

g 2,000

[

0 J E ﬁ = = |
16 80 160 320 640
Number of cores

Credit: Tim Hunter, with support of the Mobile Millennium team; P.I. Alex Bayen; traffic.berkeley.edu

Shark: Hive on Spark

Motivation

Hive is great, but Hadoop’s execution engine
makes even the smallest queries take minutes

Scalais good for programmers, but many data
users only know SQL

Can we extend Hive to run on Spark?

Hive Architecture

CLI JDBC

Driver

Meta ' '

store

SOL Query Physical Plan
Parser Optimizer Execution

4

MapReduce ‘

HDFS

Shark Architecture

CLI JDBC

Driver | Cache Mgr.

Query nysical Plan

Optimizer Execution

[Engle et al, SIGMOD 2012]

Efficient In-Memory Storage

Simply caching Hive records as Java objects is
inefficient due to high per-object overhead

Instead, Shark employs column-oriented
storage using arrays of primitive types

Row Storage Column Storage

Efficient In-Memory Storage
Simply caching Hive records as Java objects is
inefficient due to high per-object overhead

Instead, Shark employs column-oriented
storage using arrays of primitive types

Benefit: similarly compact size to serialized data,
but >5x faster to access

Using Shark

CREATE TABLE mydata_cached AS SELECT ..

Run standard HiveQL on it, including UDFs

» A few esoteric features are not yet supported

Can also call from Scala to mix with Spark

[Early alpha release at shark.cs.berkeley.edu]

Benchmark Query 1

SELECT * FROM grep WHERE field LIKE *‘%XYZ%’;

Shark (cached) [PE

0 50 100 150 200 250

Execution Time (secs)

Benchmark Query 2

SELECT sourceIP, AVG(pageRank), SuM(adRevenue) AS earnings
FROM rankings AS R, uservVisits AS V ON R.pageURL = V.destURL
WHERE V.visitDate BETWEEN ‘1999-01-01" AND ‘2000-01-01’
GROUP BY V.sourceIP

ORDER BY earnings DESC

LIMIT 1;

Shark (cached)

0 100 200 300 400 500

Execution Time (secs)

Demo

What’'s Next?

Recall that Spark’s model was motivated by two
emerging uses (interactive and multi-stage apps)

Another emerging use case that needs fast data

sharing is stream processing
» Track and update state in memory as events arrive
» Large-scale reporting, click analysis, spam filtering, etc

Streaming Spark

Extends Spark to perform streaming computations

Runs as a series of small (~1s) batch jobs, keeping
state in memory as fault-tolerant RDDs

Intermix seamlessly with batch and ad-hoc queries

map reduceByWindow

tweetStream T=1
.flatmap(_.toLower.split)
.map(word => (word, 1))
.reduceBywindow(“5s”, _ + _) =
T=2

[Zaharia et al, HotCloud 2012]

Streaming Spark

Extends Spark to perform streaming computations

Runs as a series of small (~1s) batch jobs, keeping
state in memory as fault-tolerant RDDs

Intermix seamlessly with batch and ad-hoc queries

Result: can process 42 million records/second
(4 GB/s) on 100 nodes at sub-second latency

Streaming Spark

Extends Spark to perform streaming computations

Runs as a series of small (~1s) batch jobs, keeping
state in memory as fault-tolerant RDDs

Intermix seamlessly with batch and ad-hoc queries

Alpha coming this summer

Conclusion

Spark and Shark speed up your interactive and
complex analytics on Hadoop data

Download and docs: www.spark-project.org
» Easy to run locally, on EC2, or on Mesos and soon YARN

User meetup: meetup.com/spark-users

Training camp at Berkeley in August!

matei@berkeley.edu / @matei_zaharia

Behavior with Not Enough RAM

100

_ o L

% 80 o S

= : ~

,z 60 I 3 ~

o o)

g 4 I : 0

S 20 -

0

Cache 25% 50% 75% Fully
disabled cached

% of working set in memory

Software Stack

Shark Bagel reaming
(Hive on Spark) [(Pregel on Spark) Spark

Local ECo Apache VARN
mode Mesos

