
Discretized Streams
An Efficient and Fault-Tolerant Model for
Stream Processing on Large Clusters

Matei Zaharia, Tathagata Das,
Haoyuan Li, Scott Shenker, Ion Stoica UC	
 BERKELEY	

Motivation

•  Many important applications need to process
large data streams arriving in real time
– User activity statistics (e.g. Facebook’s Puma)
– Spam detection
– Traffic estimation
– Network intrusion detection

•  Our target: large-scale apps that must run on
tens-hundreds of nodes with O(1 sec) latency

Challenge

•  To run at large scale, system has to be both:
– Fault-tolerant: recover quickly from failures and

stragglers
– Cost-efficient: do not require significant hardware

beyond that needed for basic processing

•  Existing streaming systems don’t have both
properties

Traditional Streaming Systems

•  “Record-at-a-time” processing model
– Each node has mutable state
– For each record, update state & send new records

mutable state

node 1

node 3

input records push

node 2 input records

Traditional Streaming Systems

Fault tolerance via replication or upstream backup:

node 1

node 3

node 2

node 1’

node 3’

node 2’

synchronization

node 1

node 3

node 2

standby

input

input

input

input

Traditional Streaming Systems

Fault tolerance via replication or upstream backup:

node 1

node 3

node 2

node 1’

node 3’

node 2’

synchronization

node 1

node 3

node 2

standby

input

input

input

input

Fast recovery, but 2x
hardware cost

Only need 1 standby,
but slow to recover

Traditional Streaming Systems

Fault tolerance via replication or upstream backup:

node 1

node 3

node 2

node 1’

node 3’

node 2’

synchronization

node 1

node 3

node 2

standby

input

input

input

input

Neither approach tolerates stragglers

Observation

•  Batch processing models for clusters (e.g.
MapReduce) provide fault tolerance efficiently
– Divide job into deterministic tasks
– Rerun failed/slow tasks in parallel on other nodes

•  Idea: run a streaming computation as a series
of very small, deterministic batches
– Same recovery schemes at much smaller timescale
– Work to make batch size as small as possible

Discretized Stream Processing

t = 1:

t = 2:

stream 1 stream 2

batch operation

pull input

…

…

input

immutable dataset
(stored reliably)

immutable dataset
(output or state);
stored in memory
without replication

…

Parallel Recovery

•  Checkpoint state datasets periodically
•  If a node fails/straggles, recompute its dataset

partitions in parallel on other nodes
map

input dataset

Faster recovery than upstream backup,
without the cost of replication

output dataset

How Fast Can It Go?

•  Prototype built on the Spark in-memory computing
engine can process 2 GB/s (20M records/s) of
data on 50 nodes at sub-second latency

0
0.5

1
1.5

2
2.5

3

0 20 40 60 C
lu

st
er

 T
hr

ou
gh

pu
t (

G
B

/s
)

of Nodes in Cluster

Grep

1 sec
2 sec

0
0.5

1
1.5

2
2.5

3

0 20 40 60 C
lu

st
er

 T
hr

ou
gh

pu
t (

G
B

/s
)

of Nodes in Cluster

WordCount

1 sec
2 sec

0
0.5

1
1.5

2
2.5

3

0 20 40 60 C
lu

st
er

 T
hr

ou
gh

pu
t (

G
B

/s
)

of Nodes in Cluster

Grep

1 sec
2 sec

0
0.5

1
1.5

2
2.5

3

0 20 40 60 C
lu

st
er

 T
hr

ou
gh

pu
t (

G
B

/s
)

of Nodes in Cluster

WordCount

1 sec
2 sec

Max throughput within a given latency bound (1 or 2s)

How Fast Can It Go?

•  Recovers from failures within 1 second

Failure Happens

0.0

0.5

1.0

1.5

2.0

0 15 30 45 60 75

In
te

rv
al

 P
ro

ce
ss

in
g

Ti
m

e
(s

)

Time (s)

Sliding WordCount on 10 nodes with 30s checkpoint interval

Programming Model

•  A discretized stream (D-stream) is a sequence
of immutable, partitioned datasets
– Specifically, resilient distributed datasets (RDDs),

the storage abstraction in Spark

•  Deterministic transformations operators produce
new streams

API

•  LINQ-like language-integrated API in Scala
•  New “stateful” operators for windowing

pageViews = readStream("...", "1s") !

ones = pageViews.map(ev => (ev.url, 1)) !

counts = ones.runningReduce(_ + _) !

t = 1:

t = 2:

pageViews! ones ! counts !

map reduce

. . .

= RDD = partition

Scala function literal

sliding = ones.reduceByWindow(!
 “5s”, _ + _, _ - _) !

Incremental version with “add”
and “subtract” functions

Other Benefits of Discretized Streams

•  Consistency: each record is processed atomically

•  Unification with batch processing:
– Combining streams with historical data

 !
 pageViews.join(historicCounts).map(...) !

–  Interactive ad-hoc queries on stream state
 !
 pageViews.slice(“21:00”, “21:05”).topK(10)

Conclusion

•  D-Streams forgo traditional streaming wisdom
by batching data in small timesteps

•  Enable efficient, new parallel recovery scheme

•  Let users seamlessly intermix streaming, batch
and interactive queries

Related Work

•  Bulk incremental processing (CBP, Comet)
–  Periodic (~5 min) batch jobs on Hadoop/Dryad
–  On-disk, replicated FS for storage instead of RDDs

•  Hadoop Online
–  Does not recover stateful ops or allow multi-stage jobs

•  Streaming databases
–  Record-at-a-time processing, generally replication for FT

•  Parallel recovery (MapReduce, GFS, RAMCloud, etc)
–  Hwang et al [ICDE’07] have a parallel recovery protocol for

streams, but only allow 1 failure & do not handle stragglers

Timing Considerations

•  D-streams group input into intervals based on
when records arrive at the system

•  For apps that need to group by an “external”
time and tolerate network delays, support:
– Slack time: delay starting a batch for a short fixed

time to give records a chance to arrive
– Application-level correction: e.g. give a result for

time t at time t+1, then use later records to update
incrementally at time t+5

D-Streams vs. Traditional Streaming

Concern Discretized Streams Record-at-a-time Systems

Latency 0.5–2s 1-100 ms

Consistency Yes, batch-level
Not in msg. passing systems;
some DBs use waiting

Failures Parallel recovery Replication or upstream bkp.

Stragglers Speculation Typically not handled

Unification
with batch

Ad-hoc queries from
Spark shell, join w. RDD

Not in msg. passing systems;
in some DBs

