
Chapter 5

Stochastic Variational Inference for
HMMs, HSMMs, and

Nonparametric Extensions

Hierarchical Bayesian time series models can be applied to complex data in many do-
mains, including data arising from behavior and motion [32, 33], home energy con-
sumption [60], physiological signals [69], single-molecule biophysics [71], brain-machine
interfaces [54], and natural language and text [44, 70]. However, for many of these
applications there are very large and growing datasets, and scaling Bayesian inference
in rich hierarchical models to these large datasets is a fundamental challenge.

Many Bayesian inference algorithms, including standard Gibbs sampling and mean
Þeld algorithms, require a complete pass over the data in each iteration and thus do not
scale well. In contrast, some recent Bayesian inference methods require only a small
number of passes [52] and can even operate in the single-pass or streaming settings [15].
In particular, stochastic variational inference (SVI) [52] provides a general framework
for scalable inference based on mean Þeld and stochastic gradient descent. However,
while SVI has been studied extensively for topic models [53, 115, 17, 114, 92, 52], it has
not been applied to time series.

In this chapter, we develop SVI algorithms for the core Bayesian time series models
of this thesis, namely the hidden Markov model (HMM) and hidden semi-Markov model
(HSMM), as well as their nonparametric extensions based on the hierarchical Dirichlet
process (HDP), the HDP-HMM and HDP-HSMM. Both the HMM and HDP-HMM are
ubiquitous in time series modeling, and so the SVI algorithms developed here are widely
applicable. However, as discussed in the previous chapter, general HSMM inference
subroutines have time complexity that scales quadratically with observation sequence
length, and such quadratic scaling can be impractical even in the setting of SVI. To
address this shortcoming, we use the methods developed in Chapter4 for Bayesian
inference in (HDP-)HSMMs with negative binomial durations to provide approximate
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Algorithm 5.1 Stochastic gradient ascent

Initialize ! (0)

for t = 1 , 2, . . . do
ök(t) ! sample Uniform({ 1, 2, . . . , K } )
! (t ) ! ! (t ! 1) + " (t )KG (t) " ! g(! (t ! 1) , øy(ök( t ) ) )

SVI updates with time complexity that scales only linearly with sequence length.
In Section 5.1we brießy review the basic ingredients of SVI. In Section5.2, we derive

SVI updates for (Þnite) HMMs and HSMMs, and in Section5.3 we apply the methods
derived in Chapter 4 to derive faster SVI updates for HSMMs with negative binomial
durations. Finally, in Section 5.4 we extend these algorithms to the nonparametric
HDP-HMM and HDP-HSMM.

! 5.1 Stochastic variational inference

In this section we summarize the general stochastic variational inference (SVI) frame-
work developed in Ho!man et al. [52]. SVI involves performing stochastic gradient
optimization on a mean Þeld variational objective, so we Þrst review basic results on
stochastic gradient optimization and next provide a derivation of the form of the nat-
ural gradient of mean Þeld objectives for complete-data conjugate models. We use the
notation deÞned in Sections2.3.2 and 2.4.2 throughout.

! 5.1.1 Stochastic gradient optimization

Consider the optimization problem

arg max
!

f (!, øy) where f (!, øy) =
K!

k=1

g(!, øy(k) ) (5.1.1)

and where øy = { øy(k) } K
k=1 is a Þxed dataset. Using the decomposition of the objective

function f , if ök is sampled uniformly over { 1, 2, . . . , K } , we have

" ! f (! ) = K
K!

k=1

1
K

" ! g(!, øy(k) ) = K áEök

"
" ! g(!, øy(ök) )

#
. (5.1.2)

Thus we can generate approximate gradients of the objectivef using only one øy(k) at
a time. A stochastic gradient ascent algorithm for a sequence ofstepsizes" (t ) and a
sequence of positive deÞnite matricesG(t) is given in Algorithm 5.1.

From classical results in stochastic optimization [93, 14], if the sequence of stepsizes
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z(k ) y(k )

k = 1 , 2, . . . , K

!

Figure 5.1: Prototypical graphical model for stochastic variational inference (SVI).
The global latent variables are represented by! and the local latent variables by z(k ) .

satisÞes
! !

t=1 " (t ) = ! and
! !

t=1 (" (t ) )2 < ! and each G(t) has uniformly bounded
eigenvalues, then the algorithm converges to a local optimum, i.e.! " ! limt#! ! (t )

satisÞes" ! f (! " , øy) = 0 with probability 1. If øy is a large dataset, then each update
in a stochastic gradient algorithm only operates on one øy(k) , or minibatch, at a time;
therefore, stochastic gradient algorithms can scale to the large-data setting. To make a
single-pass algorithm, the minibatches can be sampled without replacement. The choice
of stepsize sequence can signiÞcantly a!ect the performance of a stochastic gradient
optimization algorithm. There are automatic methods to tune or adapt the sequence
of stepsizes [104, 92], though we do not discuss them here.

SVI uses a particular stochastic gradient ascent algorithm to optimize a mean Þeld
variational Bayesian objective over large datasets øy, as we review next.

" 5.1.2 Stochastic variational inference

Using the notation of Section 2.3.2, given a probabilistic model of the form

p(!, z, y ) = p(! )
K"

k=1

p(z(k) |! )p(y(k) |z(k) , ! ) (5.1.3)

that includes global latent variables ! , local latent variables z = { z(k) } K
k=1 , and observa-

tions y = { y(k) } K
k=1 , the mean Þeld problem is to approximate the posteriorp(!, z |øy) for

Þxed data øy with a distribution of the form q(! )q(z) = q(! )
#

k q(z(k) ) by Þnding a local
minimum of the KL divergence from the approximating distribution to the posterior
or, equivalently, Þnding a local maximum of the marginal likelihood lower bound

L ! Eq(! )q(z)

$
ln

p(!, z, øy)
q(! )q(z)

%
# p(øy). (5.1.4)

SVI optimizes the objective (5.1.4) using a stochasticnatural gradient ascent algorithm
over the global factorsq(! ). See Figure5.1 for a graphical model.

Gradients of L with respect to the parameters ofq(! ) have a convenient form if we
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assume the priorp(! ) and each complete-data likelihoodp(z(k) , y(k) |! ) are a conjugate
pair of exponential family densities. That is, if we have

ln p(! )= ! " ! , t ! (! )" # Z! (" ! ) (5.1.5)

ln p(z(k) , y(k) |! )= ! " zy(! ), tzy(z(k) , y(k) )"# Zzy(" zy(! )) (5.1.6)

then conjugacy identiÞes the statistic of the prior with the natural parameter and log
partition function of the likelihood via t! (! ) = ( " zy(! ), # Zzy(" zy(! )), so that

p(! |z(k) , øy(k) ) $ exp{! " ! + ( tzy(z(k) , øy(k) ), 1), t ! (! )"} . (5.1.7)

Conjugacy implies the optimal q(! ) has the same form as the prior; that is, without loss
of generality we haveq(! ) = exp {! !" ! , t ! (! )" # Z! ( !" ! )} for some variational parameter
!" ! .

Given this structure, we can Þnd a simple expression for the gradient ofL with
respect to the global variational parameter !" ! . To simplify notation, we write t(z, øy) !
" K

k=1 (tzy(z(k) , øy(k) ), 1), !" ! !" ! , " ! " ! , and Z ! Z! . Then we have

L = Eq(! )q(z) [ln p(! |z, øy) # ln q(! )] + const. (5.1.8)

= !" + Eq(z) [t(z, øy)], %Z (!" )" # (! !", %Z (!" )"# Z (!" )) + const. (5.1.9)

where the constant term does not depend on!" and where we have used the exponential
family identity Eq(! ) [t ! (! )] = %Z (!" ) from Proposition 2.2.2. Di!erentiating over !" , we
have

%!" L =
#
%2Z (!" )

$ #
" + Eq(z) [t(z, øy)] # !"

$
. (5.1.10)

The factor %2Z (!" ) is the Fisher information of the prior p(! ) and, because the prior and
variational factor are in the same exponential family, it is also the Fisher information
of the global variational factor q(! ). The natural gradient !%!" can be deÞned in terms
of the gradient [52] via !%!" !

#
%2Z (!" )

$! 1 %!" , and so we have

!%!" L =
#
" + Eq(z) [t(z, øy)] # !"

$
. (5.1.11)

Expanding q(z) =
%K

i =1 q(z(k) ) and t(z, øy) !
" K

k=1 (tzy(z(k) , øy(k) ), 1) we can write

!%!" L =

&

" +
K'

k=1

Eq(z( k ) ) [t(z
(k) , øy(k) )] # !"

(

(5.1.12)

and so the natural gradient decomposes into local terms as required for stochastic
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Algorithm 5.2 Stochastic Variational Inference (SVI)

Initialize global variational parameter e⌘(1)�

for t = 1, 2, . . . do
k̂  sample Uniform({1, 2, . . . , K})

q⇤(z(k̂)) LocalMeanField(e⌘(t), ȳ(k̂)), e.g. Eq. (5.1.14)

e⌘(t+1)
�  (1� ⇢(t))e⌘(t)� + ⇢(t)

⇣

⌘� + s · E
q⇤(z(ˆk))

h

t(z(k̂), ȳ(k̂))
i⌘

gradient optimization in (5.1.2).

Therefore a stochastic natural gradient ascent algorithm on the global variational

parameter e⌘� proceeds at iteration t by sampling a minibatch ȳ(k) and taking a step of

some size ⇢(t) in an approximate natural gradient direction via

e⌘�  (1� ⇢(t))e⌘� + ⇢(t)
⇣

⌘� + s · Eq⇤(z(k))[t(z
(k), ȳ(k))]

⌘

(5.1.13)

where q⇤(x1:T ) is defined below and where s scales the stochastic gradient update on

the minibatch to represent the full size of the dataset; that is, if k is sampled uniformly

and we use |y| and |y(k)| to denote the sizes of the dataset and minibatch, respectively,

we have s = |y|/|y(k)|. In each step we find the optimal local factor q⇤(z(k)) using the

standard mean field update from Proposition 2.3.3 and the current value of q(�), i.e. we

compute:

q⇤(z(k)) / exp
n

Eq(�)[ln p(z(k)|�)p(ȳ(k)|z(k), �)]
o

. (5.1.14)

We summarize the general SVI algorithm in Algorithm 5.2.

⌅ 5.2 SVI for HMMs and HSMMs

In this section we apply SVI to both HMMs and HSMMs and express the SVI updates

in terms of HMM and HSMM messages. For notational simplicity, we consider a dataset

of K sequences each of length T , written ȳ = {ȳ(k)1:T }Kk=1, and take each minibatch to be

a single sequence written simply ȳ1:T , suppressing the minibatch index k for simplicity.

We also assume all sequences have the same initial state distribution ⇡(0).

⌅ 5.2.1 SVI update for HMMs

Recall from Section 2.4 that a Bayesian HMM with N states defines a joint distribution

over an initial state distribution ⇡(0), a row-stochastic transition matrix A, observation

parameters ✓ = {✓i}Ni=1, and K hidden state sequences x(k)
1:T and observation sequences

y(k)1:T for k = 1, 2, . . . , K. We use ⇡(i) to denote the ith row of A (i = 1, 2, . . . , N) and

⇡ = {⇡i}Ni=0 to collect the transition rows and the initial state distribution. When



106 CHAPTER 5. SVI FOR BAYESIAN TIME SERIES

convenient, we use the alternative notationsp(! ) = p(! (0) )p(A) =
! N

i =0 p(! (i ) ) to
denote the distribution over the initial state distribution and transition matrix and
p(" ) =

! N
i =1 p(" (i ) ) to denote the distribution over the observation parameters. The

joint density for a Bayesian HMM is then

p(! (0) )p(A)p(" )
K"

k=1

p(x(k)
1:T , y(k)

1:T |! (0) , A, " ). (5.2.1)

In terms of the notation in Section 5.1.2, the global variables are the HMM parame-
ters and the local variables are the hidden states; that is,# = ( A, ! (0) , " ) and z = x1:T .
To derive explicit conjugate updates, we assume the observation model is conjugate
in that ( p(" (i ) ), p(y|" (i ) )) is a conjugate pair of exponential family densities for each
i = 1 , 2, . . . , N and write

p(! (i ) ) = p(! (i ) |$(i ) ) = Dir( $(i ) ) i = 0 , 1, . . . , N (5.2.2)

p(" (i ) ) = p(" (i ) |%(i )
! ) = exp {! %(i )

! , t (i )
! (" (i ) )" # Z (i )

! (%(i )
! )} i = 1 , 2, . . . , N (5.2.3)

p(yt |" (i ) ) = exp {! t(i )
! (" (i ) ), (t (i )

y (yt ), 1)"} i = 1 , 2, . . . , N. (5.2.4)

Correspondingly the variational family is q(! )q(A)q(" )
! K

k=1 q(x(k)
1:T ) with

q(! (i ) ) = q(! (i ) |#$(i ) ) = Dir( #$(i ) ) i = 0 , 1, . . . , N (5.2.5)

q(" (i ) ) = q(" (i ) |#%(i )
! ) = exp {! #%(i )

! , t (i )
! (" (i ) )" # Z (i )

! (#%(i )
! )} i = 1 , 2, . . . , N. (5.2.6)

That is, each variational factor is in the same (conjugate) prior family as the corre-
sponding factor in the joint distribution p. Therefore we wish to optimize over the
variational parameters for the initial state distribution #$(0) , the variational parameters
for the transition distribution #$(i ) (i = 1 , 2, . . . , N ), and the variational parameters for
the observation parameter distributions #%! .

At each iteration of the SVI algorithm we sample a sequence øy1:T from the dataset
and perform a stochastic gradient step onq(A)q(! (0) )q(" ) of some size&. To compute
the gradient, we collect expected su!cient statistics with respect to the optimal factor
for q(x1:T ), which in turn depends on the current value ofq(A)q(! (0) )q(" ). Recall from
Section 2.4.2 that we deÞne

#! (i ) ! Eq(" )

$
ln ! (i )

%
#L ij ! Eq(! )

$
ln p(øyt |" (i ) )

%
(5.2.7)
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Algorithm 5.3 HMM SVI

Initialize global variational parameters e⌘(i)✓ , e↵(i), and e↵(0)

for t = 1, 2, . . . do
Sample minibatch index k̂ uniformly from {1, 2, . . . , K}
Using minibatch ȳ(k̂), compute each t̂(i)y , t̂(i)trans, and t̂(i)init

with Eqs. (5.2.8)-(5.2.10)

Update each e⌘(i)✓ , e↵(i), and e↵(0)

with Eqs. (5.2.11)-(5.2.13)

and collect the e⇡(i) into a matrix eA, where the ith row of eA is e⇡(i). Then using the

HMM messages F and B defined in Section 2.4 we write the expected statistics as

t̂(i)y , Eq(x
1:T )

T
X

t=1

I[xt = i]t(i)y (ȳt) =
T
X

t=1

Ft,iBt,i · (t(i)y (ȳt), 1)/Z (5.2.8)

(t̂(i)trans)j , Eq(x
1:T )

T�1
X

t=1

I[xt = i, xt+1 = j] =
T�1
X

t=1

Ft,i
eAi,j

eLt+1,jBt+1,j/Z (5.2.9)

(t̂init)i , Eq(x
1:T )I[x1 = i] = e⇡0B1,i/Z (5.2.10)

where I[ · ] is 1 if its argument is true and 0 otherwise and Z is the normalizer Z ,
PN

i=1 FT,i.

With these expected statistics, taking a natural gradient step in the parameters of

q(A), q(⇡0), and q(✓) of size ⇢ is

e⌘✓
(i)  (1� ⇢) e⌘✓

(i) + ⇢(⌘(i)✓ + s · t̂(i)y ) (5.2.11)

e↵(i)  (1� ⇢)e↵(i) + ⇢(↵(i) + s · t̂(i)trans) (5.2.12)

e↵(0)  (1� ⇢)e↵(0) + ⇢(↵(0) + s · t̂(i)init) (5.2.13)

where s = |ȳ|/|ȳ(k)| scales the minibatch gradient to represent the full dataset, as in

Section 5.1. When the dataset comprises K sequences where the length of sequence k

is T (k), we have s = (
PK

k0=1 T (k0))/T (k).

We summarize the overall algorithm in 5.3.

⌅ 5.2.2 SVI update for HSMMs

The SVI updates for the HSMM are similar to those for the HMM with the addition of

a duration update, though expressing the expected su�cient statistics in terms of the
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HSMM messages is substantially di!erent. The form of these expected statistics follows
from the HSMM E-step [78, 54].

To derive explicit updates, we assume the duration prior and likelihood are a con-
jugate pair of exponential families. Writing the duration parameters as ! = { ! (i ) } N

i =1 ,
we can write the prior, variational factor, and likelihood up to proportionality as

p(! (i ) ) ! exp{" " (i )
! , t (i )

! (! (i ) )#}, (5.2.14)

p(d|! (i ) ) = exp {" t(i )
! (! (i ) ), (td(d), 1)#}, (5.2.15)

q(! (i ) ) ! exp{" !" (i )
! , t (i )

! (! (i ) )#}. (5.2.16)

Using the HSMM messages (F, F ! ) and (B, B ! ) with !L and !A from the previous section,
we can write

(öt(i )
trans )j ! Eq(x1:T )

T " 1"

t=1

[xt = i, x t+1 = j, x t $= xt+1 ] (5.2.17)

=
T " 1"

t=1

Ft,i B !
t,j

!Ai,j /Z (5.2.18)

where Z is the normalizer Z !
# N

i =1 B !
0,i !#

(0)
i .

To be written in terms of the HSMM messages the expected label sequence indicators
[xt = i ] must be expanded to

[xt = i ] =
"

"<t

[x" +1 = i, x " $= x" +1 ] % [x" = i, x " $= x" +1 ]. (5.2.19)

Intuitively, this expansion expresses that a state is occupied after a transition into it
occurs and until the Þrst transition occurs out of that state and to another. Then we
have

Eq(x1:T ) [xt+1 = i, x t $= xt+1 ] = F !
t,i B !

t,i /Z (5.2.20)

Eq(x1:T ) [xt = i, x t $= xt+1 ] = Ft,i Bt,i /Z. (5.2.21)

from which we can computeEq(x1:T ) [xt = i ], which we use in the deÞnition oföt(i )
y given

in (5.2.8).
Finally, deÞning !Ddi ! Eq(! )

$
p(d|! (i ) )

%
, we compute the expected duration statistics

as indicators on every possible durationd via
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Algorithm 5.4 HSMM SVI

Initialize global variational parameters !! (i )
! , !! (i )

" , !" (i ) , and !" (0)

for t = 1 , 2, . . . do
Sample minibatch index ök uniformly from { 1, 2, . . . , K }
Using minibatch øy(ök) , compute eachöt(i )

dur , öt(i )
y , öt(i )

trans , and öt(i )
init

with Eqs. (5.2.8),(5.2.10), (5.2.18), and (5.2.23)
Update each!! (i )

! , !! (i )
" , !" (i ) , and !" (0)

with Eqs. (5.2.11)-(5.2.13) and (5.2.24)

(öt(i )
dur )d ! Eq(x1:T )

"
#

t

[xt != xt+1 , xt+1: t+ d = i, x t+ d+1 != i ]

$

(5.2.22)

=
T ! d+1#

t=1

!Dd,i F "
t,i Bt+ d,i (

t+ d%

t! = t

!L t ! ,i )/Z. (5.2.23)

Note that this step alone requiresO(T2N ) time.
With these expected statistics, the updates to the observation, transition, and initial

state factors are (5.2.11), (5.2.12), and (5.2.13). The duration factor update is

!! (i )
! " (1 # #)!! (i )

! + #(! (i )
! + s(

T#

d=1

(öt(i )
dur )d á(td(d), 1))) . (5.2.24)

We summarize the overall algorithm in 5.4.
While these updates can be used for any family of duration models, they can be

computationally expensive: as described in Chapter4, both computing the HSMM mes-
sages and computing the expected statistics (5.2.22) require time that scales quadrati-
cally with the sequence lengthT, which can be severely limiting even in the minibatch
setting. In the next section, we apply the techniques developed in Chapter4 to the
SVI algorithm to derive updates for which the computational complexity scales only
linearly with T.

" 5.3 Linear-time updates for negative binomial HSMMs

General HSMM inference is much more expensive than HMM inference, having runtime
O(T2N + T N 2) compared to just O(T N 2) on N states and a sequence of lengthT.
The quadratic dependence onT can be severely limiting even in the minibatch setting
of SVI, since minibatches often must be su!ciently large for good performance [52, 15].
In this section, we develop approximate SVI updates for a particular class of duration
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distributions with unbounded support for which the computational complexity is only
linear in T.

Following the development in Chapter4, we consider HSMMs with negative binomial
duration distributions. Each duration likelihood has parameters r and p with the form

p(k|r, p) =
!

k + r ! 2
k ! 1

"
exp{ (k ! 1) ln p + r ln(1 ! p)} (5.3.1)

for k = 1 , 2, . . .. The negative binomial likelihood is not an exponential family of
densities over (r, p), and it has no simple conjugate prior. We use priors of the form
p(r, p) = p(r )p(p) with p(r ) a Þnite categorical distribution with support { 1, 2, . . . , rmax}
and p(p) an independent Beta distribution, i.e.

p(r ) " exp{#!, r $}, p(p) = Beta( a, b) " exp{ (a ! 1) ln(p) + ( b! 1) ln(1 ! p)} .
(5.3.2)

Similarly, we deÞne a corresponding mean Þeld factorq(r, p) = q(r )q(p|r ) as

q(r ) " exp{##!, r $}, q(p|r ) = Beta( #a(r ) ,#b(r ) ). (5.3.3)

Thus for N states we have prior hyperparameters{ (! (i ) , a(i ) , b(i ) )} N
i =1 and variational

parameters { (! (i ) , { a(r,i ) , b(r,i ) } r max
r =1 )} N

i =1 . To simplify notation, we suppress the indices
r and i when possible.

We write d(i ) (x1:T ) to denote the set of durations for state i in the state sequence
x1:T . Dropping indices for simplicity, the part of the variational lower bound objective
that depends onq(r, p) is

L ! Eq(r,p )q(x1:T )

$
ln

p(r, p, d(x1:T ))
q(r, p)

%
(5.3.4)

= Eq(r ) ln
p(r )
q(r )

+ Eq(r )q(x1:T )h(r, d(x1:T )) + Eq(r )

&
Eq(p|r ) ln

p(p)øp(d(x1:T )|r, p)
q(p|r )

'

(5.3.5)

whereh(r, d(x1:T )) !
(

d! ! d(x1:T ) ln
) r + d! " 2

d! " 1

*
arises from the negative binomial base mea-

sure term and ln øp(d(x1:T )|r, p) !
(

d! ! d(x1:T ) (d
#ln p + r ln(1 ! p)) collects the negative

binomial PMF terms excluding the base measure.
First, we show that the SVI updates to eachq(p|r ) can be considered independent

of each other and ofq(r ) by taking the natural gradient of L . The only terms in (5.3.4)
that depend on q(p|r ) are in the Þnal term. Since the expectation overq(r ) in the



Sec. 5.3. Linear-time updates for negative binomial HSMMs 111

Þnal term is simply a weighted Þnite sum, taking the gradient ofL with respect to
the parameters (!a(r ) , !b(r ) ) for r = 1 , 2, . . . , rmax yields a sum of gradients weighted by
eachq(r ). Each gradient in the sum is that of a variational lower bound with Þxed r ,
and becauseq(p|r ) is conjugate to the negative binomial likelihood with Þxed r , each
gradient has a simple conjugate form. As a result of this decomposition, if we collect
the variational parameters of q(r, p) into !! ! ! (!", (!a(1) , !b(1) ), . . . , (!a(r max ) , !b(r max ) )), then
the Fisher information matrix

J (!! ! ) ! E(r,p )! q(r,p )

"
(! !" ! ln q(r, p))( ! !" ! ln q(r, p))T

#
(5.3.6)

is block diagonal with the same partition structure as !! ! . If we denote the Fisher
information of q(p|r ) as J (!a(r ) , !b(r ) ) , then the (r + 1)th diagonal block of J (!! ! ) can
be written as q(r )J (!a(r ) , !b(r ) ), and so the q(r ) factors cancel in the natural gradient.
Therefore the natural gradient updates to each (!a(r ) , !b(r ) ) are independent and can be
computed using simple conjugate Beta updates.

Next, we derive updates to q(r ). Since q(r ) is a discrete distribution with Þnite
support, we write its complete-data conditional in an exponential family form trivially:

p(r |p, d(x1:T )) " exp{#" + tr (p, d(x1:T )) , r $} (5.3.7)

(tr (p, d(x1:T ))) r !
$

d! " d(x1:T ) ln p(p|d#, r ) + ln h(r, d#). (5.3.8)

From the results in Section 5.1.2 the j th component of the natural gradient of (5.3.4)
with respect to the parameters ofq(r ) is

%
!! !#L

&

j
= " j + Eq(p|r = j )q(x1:T ) t r (p, d(x1:T )) % !" j (5.3.9)

Due to the log base measure term lnh(r, d#) in ( 5.3.8), these expected statistics re-
quire O(T2N ) time to compute exactly even after computing the HSMM messages
using (5.2.23). The HSMM SVI algorithm developed in Section 5.2.2 provides an ex-
act algorithm using this update. However, we can use the e!cient sampling-based
algorithms developed in Chapter4 to compute an approximate update more e!ciently.

To achieve an update runtime that is linear in T, we use a sampling method inspired
by the sampling-based SVI update used in Wang and Blei [114]. For some sample count
S, we collect S model parameter samples{ (ö#($) , ö$($) , ör ($) , öp($) )} S

$=1 using the current
global mean Þeld factors according to

ö#($) & q(#) ö$($) & q($) (ör ($) , öp($) ) & q(r, p). (5.3.10)
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and for each set of parameters we sample a state sequence

öx(! )
1:T ! p(x1:T |øy1:T , ö! (! ) , ö" (! ) , ör (! ) , öp(! ) ). (5.3.11)

Using the methods developed in Chapter4, each such sample can be drawn in time
O(T NR + T N 2). We denote the set of state sequence samples asS = { öx(! )

1:T } S
! =1 and

we set öq(x1:T ) = 1
S

!
öx!S #öx (x1:T ). As the number of samplesS grows, the distribution

öq(x1:T ) approximates Eq(" )q(#)q(r,p ) [p(x1:T |øy1:T , !, ", r, p )], while the optimal mean Þeld
update setsq(x1:T ) " exp

"
Eq(" )q(#)q(r,p ) ln p(x1:T |øy1:T , !, ", r, p )

#
. As discussed in Wang

and Blei [114], since this sampling approximation does not optimize the variational
lower bound directly, it should yield an inferior objective value. However, Wang and
Blei [114] found this approximate SVI update yielded better predictive performance
in some topic models, and provided an interpretation as an approximate expectation
propagation (EP) update. As we show in Section5.5, this update can be very e!ective
for Þtting HSMMs as well.

Given the sample-based representation öq(x1:T ), it is easy to compute the expecta-
tion over states in (5.3.9) by plugging in the sampled durations. The update to the
parameters ofq(r (i ) , p(i ) ) becomes

$$(i ) # (1 $ %)$$(i ) + %
%

$(i ) + s áöt(i )
r

&
(5.3.12)

$a(i,r ) # (1 $ %)$a(i,r ) + %
%

a(i ) + s áöt(i,r )
a

&
(5.3.13)

$b(i,r ) # (1 $ %)$b(i,r ) + %
%

b(i ) + s áöt(i,r )
b

&
(5.3.14)

for i = 1 , 2, . . . , N and r = 1 , 2, . . . , rmax , where

öt(i,r )
a !

1
S

'

öx!S

'

d! d( i ) (x)

(d $ 1) (5.3.15)

öt(i,r )
b !

1
S

'

öx !S

'

d! d( i ) (öx )

r (5.3.16)

(öt(i )
r )r ! Eq(p|r )öq(x1:T )

(
t r (p, d(i ) (öx1:T ))

)
(5.3.17)

=
%

$a(i,r ) + öt(i,r )
a $ 1

&
Eq(p|r )

(
ln(p(i,r ) )

)
+

%
$b(i,r ) + öt(i,r )

b $ 1
&

Eq(p|r )

(
ln(1 $ p(i,r ) )

)

+
'

öx!S

'

d! d( i ) (öx)

ln
*

d + r $ 2
d $ 1

+
. (5.3.18)

Similarly, we revise Eqs. (5.2.8)-(5.2.10) to compute the other expected su"cient statis-
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Algorithm 5.5 Negative Binomial HSMM SVI

Initialize global variational parameters !! (i )
! , !! (i )

" , !" (i ) , and !" (0)

for t = 1 , 2, . . . do
Sample minibatch index ök uniformly from { 1, 2, . . . , K }
Using minibatch øy(ök) , generate state sequence samples

according to Eqs. (5.3.10) and (5.3.11) and form öq(x1:T )
Using öq(x1:T ), compute eachöt(i )

dur , öt(i )
y , öt(i )

trans , and öt(i )
init

with Eqs. (5.3.19)-(5.3.21) and (5.3.15)-(5.3.18)
Update each!! (i )

! , !! (i )
" , !" (i ) , and !" (0)

with Eqs. (5.2.11)-(5.2.13) and (5.3.12)-(5.3.14)

tics using öq(x1:T ):

öt(i )
y ! Eöq(x1:T )

T"

t=1

I [xt = i ]t (i )
y (øyt ) (5.3.19)

(öt(i )
trans )j ! Eöq(x1:T )

T ! 1"

t=1

I [xt = i, x t+1 = j ] (5.3.20)

(öt init )i ! Eöq(x1:T ) I [x1 = i ] (5.3.21)

We summarize the overall algorithm in 5.5.

" 5.4 Extending to the HDP-HMM and HDP-HSMM

In this section we extend our methods to the Bayesian nonparametric versions of these
models, the HDP-HMM and the HDP-HSMM. These updates essentially replace the
transition updates in the previous algorithms.

Using the notation of Section 2.5 the generative model for the HDP-HMM with
scalar concentration parameters", # > 0 is

$ ! GEM( #), %(i ) ! DP("$ ), &(i ) iid! p(&(i ) ) (5.4.1)

x1 ! %(0) , xt+1 ! %(xt ) , yt ! p(yt |&(xt ) ) (5.4.2)

where $ ! GEM( #) denotes sampling from a stick breaking distribution deÞned by

vj
iid! Beta(1, #), $k =

#

j<k

(1 " vj )vk (5.4.3)
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and ! (i ) ! DP("# ) denotes sampling a Dirichlet process

w ! GEM( " ) zk
iid! # ! (i ) =

!!

k=1

wk$zk . (5.4.4)

To perform mean Þeld inference in HDP models, we approximate the posterior with a
truncated variational distribution. While a common truncation is to limit the two stick-
breaking distributions in the deÞnition of the HDP [52], a more convenient truncation
for our models is the Òdirect assignmentÓ truncation, used in [70] for batch mean Þeld
with the HDP-HMM and in [ 17] in an SVI algorithm for LDA. The direct assignment
truncation limits the support of q(x1:T ) to the Þnite set { 1, 2, . . . , M } T for a truncation
parameter M , i.e. Þxing q(x1:T ) = 0 when any xt > M . Thus the other factors, namely
q(! ), q(#), and q(%), only di!er from their priors in their distribution over the Þrst
M components. As opposed to standard truncation, this family of approximations is
nested overM , enabling a search procedure over the truncation parameter as developed
in [17]. A similar search procedure can be used with the HDP-HMM and HDP-HSMM
algorithms developed here.

A disadvantage to the direct assignment truncation is that the update to q(#) is
not conjugate given the other factors as in Ho!man et al. [52]. Following Liang et al.
[70], to simplify the update we use a point estimate by writing q(#) = $! ! (#). Since the
main e!ect of # is to enforce shared sparsity among the! (i ) , it is reasonable to expect
that a point approximation for q(#) will su"ce.

The updates to the factors q(%) and q(x1:T ) are identical to those derived in the
previous sections. To derive the SVI update forq(! ), we write the relevant part of the
untruncated model and truncated variational factors as

p(( ! (i )
1:M , ! (i )

rest)) = Dir( " á(#1:M , #rest)) (5.4.5)

q(( ! (i )
1:M , ! (i )

rest)) = Dir( "" (i ) ) (5.4.6)

where i = 1 , 2, . . . , M and where ! (i )
rest ! 1 "

# M
k=1 ! (i )

k and #rest ! 1 "
# M

k=1 #k.
Therefore the updates to q(! (i ) ) are identical to those in (5.2.12) except the number
of variational parameters is M + 1 and the prior hyperparameters are replaced with
" á(#1:M , #rest).

To derive a gradient of the variational objective with respect to #" , we write
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! ! ! L = ! ! !

!
Eq(" )

"
ln

p(!, " )
q(! )q(" )

#$
(5.4.7)

= ! ! !

!
ln p(! ! ) +

M%

i =1
Eq(" ( i ) ) ln p(" (i ) |! ! )

$
(5.4.8)

where lnp(! ! ) = ln pv(v(! ! ))+ln det #v
#!

&
&
&
! !

, ln pv(v) = ( #" 1)
%

j ln(1" vj ), and vi (! ) =
! i

1"
!

j<i ! j
. The Jacobian #v

#! is lower-triangular, and is given by

'
$v
$!

(

ij
=

)
**+

**,

0 i < j
1

1"
!

k<i ! k
i = j

" ! i
(1"

!
k<i ! k )2 i > j

(5.4.9)

and so taking partial derivatives we have

#
#! !

k
ln p(! ! ) = 2

%

i # k
ln 1

1"
!

j<i
! !

j
" (# " 1)

%

i # k
ln 1

1"
!

j " i
! !

j
(5.4.10)

#
#! !

k
Eq(" ) [ln p(" (i ) |! ! )] = #%( -&(i )

k ) " #%( -&(i )
M +1 )+ #%(#

% M +1
j =1 ! !

j ) " #%(! !
k ). (5.4.11)

We use this gradient expression to take a truncated gradient step on! ! during each SVI
update, where we use a backtracking line search1 to ensure the updated value satisÞes
the constraint ! ! # 0.

The updates forq(" ) and q(! ) in the HDP-HSMM di!er only in that the variational
lower bound expression changes slightly because the support of eachq(" (i ) ) is restricted
to the o!-diagonal (and renormalized). We can adapt q(" (i ) ) by simply dropping the
i th component from the representation and writing

q(( " (i )
1:M \ i , " (i )

rest)) = Dir( -&(i )
\ i ), (5.4.12)

and we change the second term in the gradient for! ! to

#
#! !

k
Eq(" ) [ln p(" (i ) |! ! )] =

.
#%( -&(i )

k ) " #%( -&(i )
M +1 )+ #%(#

%
j $= i ! !

j ) " #%(! !
k ) k $= i

0 k = i
.

(5.4.13)
Using these gradient expressions for! ! and a suitable gradient-based optimization

procedure we can also perform batch mean Þeld updates for the HDP-HSMM.
1In a backtracking line search, for some Þxed parameter ! ! (0, 1), given an initial point x and an

increment !, while x + ! is infeasible we set ! " ! !.
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! 5.5 Experiments

We conclude this chapter with a numerical study to validate the proposed algorithms.
As a performance metric, we approximate a variational posterior predictive density

on held-out data; that is, for the HMM models we estimate

p(øytest |øytrain ) =
! !

p(øytest |!, " )p(!, " |øytrain )d! d" (5.5.1)

! Eq(! )q(" )p(øytest |!, " ) (5.5.2)

by sampling models from the Þt variational distribution. Similarly, for HSMM models
we estimate p(øytest |øytrain ) ! Eq(! )q(" )q(#)p(øytest |!, ", # ). In each experiment, we chose
$(t) = ( t + %)! $ with %= 0 and & = 0 .6. Gaussian emission parameters were generated
from Normal-Inverse-Wishart (NIW) distributions with µ0 = 0, ! 0 = I , &0 = 0 .1, and
' 0 = 7. For the HDP models, we set the truncation parameters to be twice the true
number of modes. Every SVI algorithm examined uses only a single pass through the
training data.

First, we compare the performance of SVI and batch mean Þeld algorithms for
the HDP-HMM on synthetic data with fully conjugate priors. We sampled a 10-state
HMM with 2-dimensional Gaussian emissions and generated a dataset of 250 sequences
of length 4000 for a total of 106 frames. We chose a random subset of 95% of the
generated sequences to be training sequences and held out 5% as test sequences. We
repeated the Þtting procedures on the training set 5 times with initializations drawn
from the prior, and we report the average performance with standard deviation error
bars. In Figure 5.2, the SVI procedure (in blue) produces Þts that are on par with
those from the batch algorithm (in green) but orders of magnitude faster. In particular,
note that the SVI algorithm consistently converges to a local optimum of the mean Þeld
objective in a single pass through the training set, requiring roughly the amount of time
needed for a single iteration of the batch mean Þeld algorithm. This relative speedup
grows linearly with the size of the dataset, making the SVI algorithm especially useful
when the batch algorithm is infeasible.

Similarly, we compare the SVI and batch mean Þeld algorithms for the HDP-HSMM.
We sampled a 6-state HSMM with 2-dimensional Gaussian emissions and negative bi-
nomial durations, where each of the negative binomial parameters were sampled as
p " Beta(1, 1) and r " Uniform( { 1, 2, . . . , 10} ). From the model we generated a dataset
of 50 sequences of length 2000 and generated an additional test set of 5 sequences with
the same length. Figure5.3 shows again that the SVI procedure (in blue) Þts the data
orders of magnitude faster than the batch update (in green), and again it requires only
a single pass through the training set.
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Figure 5.2: A comparison of the HMM SVI algorithm with batch mean Þeld. Algo-
ritm 5.3 is shown in blue and the batch mean Þeld algorithm is shown in green.

Figure 5.3: A comparison of the HSMM SVI algorithm with batch mean Þeld. Algo-
rithm 5.4 is shown in blue and the batch mean Þeld algorithm is shown in green.

Finally, we compare the performance of the exact SVI update for the HSMM with
that of the approximate update proposed in Section5.3. We sampled a 6-state HSMM
with 2-dimensional Gaussian emissions and Poisson durations, where each of the Poisson
duration parameters is sampled as! ! Gamma(40, 2). From the model we generated
a dataset of 50 sequences of length 3000 and generated an additional test set of 5
sequences with the same length. We Þt the data with negative binomial HDP-HSMMs
where the priors on the negative binomial parameters were againp ! Beta(1, 1) and
r ! Uniform( { 1, 2, . . . , 10} ). We set the number of state sequence samples generated in
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Figure 5.4: A comparison of HSMM SVI algorithms. The approximate update scheme
of Algorithm 5.5 is shown in blue and the exact update scheme of Algorithm5.4 is shown
in green.

the sampling-based approximate update toS = 10. Figure 5.4 shows that the sampling-
based updates (in blue) are e!ective and that they provide a signiÞcant speedup over the
exact SVI update (in green). Note that, since the Þgure compares two SVI algorithms,
both algorithms scale identically with the size of the dataset. However, the time required
for the exact update scales quadratically with the minibatch sequence lengthT, while
the sampling-based update scales only linearly withT. Therefore this approximate SVI
update is most useful when minibatch sequences are long enough so that the exact
update is infeasible.


