
Michael Carbin Research Statement
My research focuses on developing programming systems (programming languages, compilers, and runtime
systems) that deliver improved performance or resilience by changing the underlying semantics of the program.
Although this approach violates the traditional contract that the programming system must preserve the
program’s semantics, my research demonstrates that giving the programming system the freedom to change
the semantics enables new methods for improved performance and resilience that are still sound and principled.

Motivation and Overview
Improving program performance and resilience are long-standing goals. Traditional approaches include a
variety of transformation, compilation, and runtime techniques that share the common property that all
executions of the resulting program are still legal executions of the original program. However, my research
demonstrates that giving programming systems the freedom to change the semantics of the program can
open up new and otherwise unavailable opportunities:

{ Performance. I have worked on a number of techniques that trade the quality of an application’s
results for increased performance. The experimental results show that aggressive techniques – for example
transforming loops to skip some (or all) iterations – can yield up to a four-fold improvement in an
application’s performance with acceptable changes in the quality of its results [Hoffmann et al., ASPLOS,
2011; Carbin et al., PEPM, 2013].

{ Resilience. I have worked on a number of techniques that modify the semantics of the program to
make it more resilient to programming errors [Perkins et al., SOSP, 2009; Long et al., ICSE, 2012]. The
experimental results show that if the program encounters an error that threatens its stability or security,
these techniques enable the runtime system to modify the program’s execution to steer around the problem
and still execute acceptably. For example, it is often possible to enable an application that is stuck in
an infinite loop to produce an acceptable output by simply exiting the loop and continuing on with the
remaining execution of the program [Carbin et al., ECOOP, 2011; Kling et al., OOPSLA, 2012].

Changing the semantics of programs raises a number of new and fundamental questions. For example, what is
the probability that the resulting program will produce the same result as the original program? How much do
the results differ from those produced by the original program? And is the resulting program safe and secure?

My research provides the first programming models and reasoning systems for answering these questions.
My work on quantitative reliability makes it possible to reason about the probability that a program will
produce the same result after some of its operations have been replaced with alternate versions that may
produce different results with some probability [Carbin et al., OOPSLA, (Best Paper Award), 2013]. My
work on relaxed programs makes it possible to effectively verify a program’s safety and accuracy after its
semantics has been broadened to enable additional executions [Carbin et al., PLDI, 2012].

Taken together, my work demonstrates that giving programming systems the freedom to change the
semantics of the program can open up new, simple, and effective ways to boost performance and/or enhance
resilience and still verify that the resulting behavior is acceptable.

Quantitative Reliability
Hardware architectures have traditionally provided a fully reliable digital abstraction. However, as software
becomes increasingly dominated by approximate computing applications that have a natural resilience to
noise and inaccuracies (e.g., multimedia processing, machine learning, and big data analytics), this reliable
abstraction may no longer be necessary for all components of an application. Motivated in part by this
observation, the computer architecture community has begun to investigate new designs that improve
performance by breaking this reliable abstraction. The goal is to reduce the cost of implementing a reliable
abstraction on top of physical materials and manufacturing methods that are inherently unreliable. For
example, researchers are investigating designs that incorporate aggressive device and voltage scaling techniques
to provide low-power ALUs and memories. A key aspect of these components is that they forgo traditional
correctness checks and instead expose timing errors and bitflips with some non-negligible probability [1–8].

Concept. Rely is a new programming system that provides verified compilation for unreliable hardware
architectures. Rely provides a programming language and a program analysis that, together, enable a developer
to control a program’s quantitative reliability [Carbin et al., OOPSLA, (Best Paper Award), 2013]. Rely’s

1 of 4



programming language enables a developer to write programs that use unreliable ALU operations and allocate
data in unreliable memories. For each function in the program, the developer can then write a quantitative
reliability specification that identifies a lower bound on the probability that a function’s implementation will
produce the correct result. Given the probability with which each hardware operation executes correctly,
Rely’s program analysis then verifies that the function’s implementation satisfies its specification.

Approach. Rely’s program analysis system uses a novel assertion logic to characterize the quantitative
reliability of intermediate values along paths through a function. The assertion logic works with the distribution
of possible states of the unreliable execution to identify the probability that each intermediate value has the
same value as if it were computed fully reliably. To verify a function’s specification, the analysis uses the
assertion logic to check that every path through the function (with sound handling of loops) produces a result
that is at least as reliable as the specification requires.

Rely’s analysis is fast and fully automatic. The analysis uses a novel simplification procedure to reduce
the verification problem from one that considers all paths through the function to one that only considers the
set of least reliable paths. Rely’s experimental results show that this approach yields up to a four orders of
magnitude reduction in the number of verification conditions, resulting in analysis times of less than one
second for a benchmark set of computational kernels from approximate computing applications.

Relaxed Programs
Transformations that improve performance and/or resilience by changing the semantics of the program often
operate by identifying points at which the program makes choices about how to organize its computation.
Examples of these choices include the number of executed iterations of a loop, the specific algorithm for a
computation, or the placement of program data in reliable or unreliable physical memories. These choices
expose a range of alternate options that a transformation or runtime system can manipulate to adapt a
program’s performance, accuracy, and/or resilience.

Concept. Building on the concept of these choice points, I have developed a programming language and
verification system for relaxed programs. A relaxed program is a standard program augmented with additional
annotations that expose the choices that the programming system can use to configure the program’s
execution [Carbin et al., PLDI, 2012]. These choices can be specified by a developer or even automatically
synthesized by a program transformation. For example, a transformation that skips loop iterations may add
an annotation to a for loop that exposes the choice to run the loop for fewer iterations. This annotation-based
approach makes it possible to use the same program text to reason about both the original program (by
ignoring the annotations) and the relaxed program (by including the annotations’ effects). This conjoined
representation of the original and relaxed programs exposes their structural correspondence. The verification
system then leverages this correspondence to enable effective relational verification of the relaxed program.

Approach. The programming language provides constructs for writing standard imperative programs
augmented with these additional annotations. The annotations are specified as small declarative programs
that characterize nondeterministic modifications to the program’s state. For example, an annotation may
truncate a loop’s execution by nondeterministically skipping its remaining iterations. By using declarative
programs for annotations (as opposed to a fixed annotation language), the programming language can encode
a wide variety of choices and transformations.

The verification system includes a specification language that enables developers to specify not only
standard assertions (e.g., memory safety), but also assertions that relate outputs and intermediate values of
the relaxed program to those of the original program. For example, an assertion may state that the output of
the relaxed program must be within 10% of that of the original program.

The verification system uses a novel relational Hoare Logic that exploits the structural correspondence
between the original and relaxed programs. For example, it is possible to prove the memory safety of the
relaxed program by assuming that the original program is memory safe and then verifying that the relaxed
program performs a subset of the memory accesses of the original program. This style of proof establishes
that the choices introduced for the relaxed program do not interfere with the reasoning that establishes a
property for the original program. This proof style can therefore lower the complexity and cost of verifying a
relaxed program by making it possible to reuse proofs and assumptions associated with the original program.

I have used an interactive theorem prover (Coq) to formalize the programming language and verification
system. This additional step makes it possible to obtain fully machine-checked verifications of relaxed programs.

2 of 4



Summary and Future Directions
Giving the programming system the freedom to change the semantics of the program can deliver significant
performance and resilience gains. However, to fully realize the benefits of this approach, it is critical to
develop a sound methodology for reasoning about the variety of programs these systems produce. My work on
both quantitative reliability and relaxed programs is the first to present a general methodology for reasoning
about the behavior of these programs. Going forward, my work opens up new opportunities in approximate
computing and emerging software development concerns.

Approximate Computing Frameworks. In traditional compiler frameworks, each optimization pass
provides the modular guarantee that it will preserve the semantics of the program. This guarantee enables a
compiler to sequentially compose optimization passes and still produce a semantically equivalent program at
the end of the optimization process. For optimizations that change the behavior of programs, however, this
compositional reasoning no longer holds. For example, optimizations that target unreliable hardware can
deliver a range of trade-offs between the reliability and performance of the program. An open question is
then how to automate the exploration of this trade-off space and preserve sufficient structure throughout the
process to perform effective end-to-end verification.

My current work on quantitative reliability and relaxed programs is a good starting point. Building
on this research, I will investigate a general compilation framework by exploring a wide variety of tech-
niques for compiling to unreliable hardware. To support this effort, I will build new collaborations in the
hardware community to increase the variety of unreliable hardware designs for which Rely can provide
verified compilation.

Compiling programs to unreliable hardware can also produce a broader understanding of program
approximation in general. For this reason, I will build collaborations with the numerical analysis, theory,
and database communities that will address how programming systems can incorporate both algorithmic
and data approximation. For example, I plan to investigate techniques such as replacing code with sublinear
algorithms and representing program data with sparse, multiresolution data representations.

Emerging Software Development Concerns. The programming language community’s goal of making
software easier to write has been partially realized through communities like GitHub and Stack Overflow. By
making it easy to access and adapt software components, these communities have brought about an ecosystem
in which software components move rapidly from project to project and from domain to domain. As these
forces continue to push software development, the vast majority of the components of future software systems
will have uncertain provenance and operation. Software developers will therefore understand less of their
systems’ overall behavior than they currently do today.

Understanding software is currently one of the primary ways we gain confidence that our software provides
some guarantee, such as security or functional correctness. As we continue to use collaborative software
communities, building confidence in software will become even more important because these communities
will face the same epidemiological challenges as human communities: bugs and security vulnerabilities will
spread among programs. A critical research question will therefore become how to build confidence in these
poorly understood systems.

Semi-automated program verification will solve this problem for core components of the software stack
(e.g., compilers, operating systems, and standard libraries and data structures). These components have
strong logical characterizations of correctness that are amenable to verification. For these systems, developers
will specify interfaces for individual components and then verify that their implementations respect these
specifications. Verified implementations will enable developers to reuse components with confidence – and
without understanding their exact provenance or operation.

On the expansive periphery of the software ecosystem, however, where software is one-off, quickly
developed, and often user-facing, correctness is less well-defined and resilience is a primary objective. For this
software, we will need new techniques that build confidence through resilience. To this end, I will investigate
how relaxed programs can serve as a platform for exposing and manipulating global system behaviors to
create resilience. I will also investigate how to connect these behaviors with developers’ limited understanding
in a way that enables developers to distinguish between the set of behaviors they have built into their software
and the set of behaviors that emerge from resiliency mechanisms. I will also investigate how to change
software interfaces to coordinate software resiliency mechanisms with end-users’ domain-specific goals. This
approach has the potential to make poorly understood software systems fast, secure, and usable.

3 of 4



Referenced Publications
Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Martin Rinard. Proving acceptability properties of
relaxed nondeterministic approximate programs. In Programming Languages Design and Implementation,
PLDI, 2012.

Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Martin Rinard. Verified integrity properties for safe
approximate program transformations. In Workshop on Partial Evaluation and Program Manipulation,
PEPM, 2013.

Michael Carbin, Sasa Misailovic, Michael Kling, and Martin Rinard. Detecting and escaping infinite
loops with Jolt. In European Conference on Object-Oriented Programming, ECOOP, 2011.

Michael Carbin, Sasa Misailovic, and Martin Rinard. Verifying quantitative reliability for programs that
execute on unreliable hardware. In Object-Oriented Programming, Systems, Languages & Applications,
OOPSLA, (Best Paper Award), 2013.

Hank Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant Agarwal, and Martin Rinard.
Dynamic knobs for responsive power-aware computing. In Architectural Support for Programming
Languages and Operating Systems, ASPLOS, 2011.

Michael Kling, Sasa Misailovic, Michael Carbin, and Martin Rinard. Bolt: on-demand infinite loop
escape in unmodified binaries. In Object-Oriented Programming, Systems, Languages & Applications,
OOPSLA, 2012.

Fan Long, Vijay Ganesh, Michael Carbin, Stelios Sidiroglou, and Martin Rinard. Automatic input
rectification. In International Conference of Software Engineering, ICSE, 2012.

Jeff Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan Bachrach, Michael Carbin,
Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou, Greg Sullivan, Weng-Fai Wong, Yoav Zibin, Michael
Ernst, and Martin Rinard. Automatically patching errors in deployed software. In Symposium on
Operating Systems Principles, SOSP, 2009.

External References
[1] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: an architectural framework for software recovery

of hardware faults. ISCA ’10.

[2] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T. Austin, K. Flautner,
and T. Mudge. Razor: A low-power pipeline based on circuit-level timing speculation. MICRO, 2003.

[3] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Architecture support for disciplined approximate
programming. ASPLOS, 2012.

[4] L. Leem, H. Cho, J. Bau, Q. Jacobson, and S. Mitra. Ersa: error resilient system architecture for
probabilistic applications. DATE, 2010.

[5] S. Liu, K. Pattabiraman, T. Moscibroda, and B. Zorn. Flikker: saving dram refresh-power through
critical data partitioning. ASPLOS, 2011.

[6] S. Narayanan, J. Sartori, R. Kumar, and D. Jones. Scalable stochastic processors. DATE, 2010.

[7] K. Palem. Energy aware computing through probabilistic switching: A study of limits. IEEE Transactions
on Computers, 2005.

[8] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman. Enerj: Approximate
data types for safe and general low-power computation. PLDI, 2011.

4 of 4


	Motivation and Overview
	Quantitative Reliability
	Relaxed Programs
	Summary and Future Directions
	Referenced Publications
	External References

