
LEARNING EFFECTIVE BDD VARIABLE ORDERS

FOR BDD-BASED PROGRAM ANALYSIS

Michael Carbin

May 2006

c© Copyright by Michael Carbin 2006

All Rights Reserved

ii

Abstract

Software reliability and security are in jeopardy. As software has become ubiquitous and
its capabilities have become more complex, code quality has been sacrificed in the race for
the next ”killer app.” In response, program analysis researchers have mounted a revolution;
they have developed new tools and methods, underpinned by traditional compilation tech-
niques, in order to save software from its downward spiral. However, because these tools
and analyses have also become more sophisticated, they too have suffered from scalability,
reliability and complexity issues.

Just as program analysis researchers have set out to solve the problems of software
developers, we have set out to solve the problems of program analysis researchers. Thebd-
dbddb (Binary Decision Diagram-Based Deductive DataBase) system has recently made
possible many advanced, context-sensitive program analyses. Such analyses can be ex-
pressed inbddbddb as Datalog queries, which are quantifiably easier to write than a tradi-
tional implementation. Thebddbddb system’s unique compilation mechanisms also yield
analyses of exceptional performance. The key to this performance is the use of Binary
Decision Diagrams (BDDs), a compact representation that exploits repeated patterns in
data, to represent the principle elements of an analysis. However, finding efficient BDD
representations (i.e., BDD variable orders) for a particular analysis is nearly impossible to
accomplish manually and, in some cases, is without a solution given an analysis and its
formulation.

This thesis presents an algorithm that helps automate the discovery of efficient BDD
representations. Our technique reformulates the search for BDD variable orders as an ac-
tive learning process over the space of BDD variable orders and their execution times. This
technique revolves around an iterative process of carefully sampling new orders and then
reducing the search space by extracting features from high performance orders. The domi-
nant features of the sampled variable orders can then be used to generate new orders, refine
existing orders, or even revise analysis formulations. The variable orders generated by
our algorithm outperform those obtained after months of manual exploration. And, more
importantly, our results makebddbddb a viable and valuable tool for program analysis
researchers in their quest for better quality code.

Acknowledgments

I would like to thank all those who contributed both directly and indirectly to this thesis.

In particular, I thank both Professor Monica Lam and John Whaley for their many hours of

thinking, writing, and coding. Some of the writing and figures for this thesis (i.e., in Chap-

ter 2 and Chapter 4) are derived from work we’ve done for various submissions and other

publications[53]. I also thank them for sparking my interest in further pursuing research.

Above all, I would like to thank my friends and family; they have dealt with my many

late nights of hacking over the years and without them, I would be lost in a sea of code with

no means for relief.

i

Contents

Acknowledgments i

1 Introduction 1

2 Thebddbddb System 4

2.1 Binary Decision Diagrams . 4

2.2 BDDs and Program Analysis . 5

2.3 Specifying Program Analysis with Datalog 6

2.4 From Datalog to BDDs . 7

3 Background 9

3.1 Finding BDD Variable Orders . 9

3.2 Learning BDDs . 10

3.3 Actively Learning BDDs . 10

4 Active Learning Algorithm 12

4.1 The Problem Space . 12

4.2 Problem Characteristics . 13

4.3 Approach and Formulation . 14

4.3.1 Sampling . 15

4.3.2 Learning . 15

4.3.3 Extraction . 15

4.3.4 Integration . 16

4.4 Algorithm Details . 17

ii

4.4.1 Data Sets . 18

4.4.2 Candidate Generator . 19

4.4.3 Uncertainty Sampler . 23

4.5 User feedback . 24

5 Experimental Results 27

5.1 Methodology . 27

5.2 Results . 29

6 Related Work 31

7 Conclusions 35

Bibliography 37

iii

List of Tables

4.1 The grouping of the data entries in our training set. Each episode is tied

to a particular rule, rule application, and operation within the rule. Within

each episode, the order along with its run time is stored. The class column

is used only for the example presented by Figure 4.3. 18

iv

List of Figures

2.1 BDDs representing the functionb1b2 + b3b4. The left figure (a) uses the

BDD decision variable orderb1, b2, b3, b4, while the right figure (b) uses the

BDD decision variable orderb1, b3, b2, b4. 5

4.1 The learning algorithm embedded in Datalog resolution. 16

4.2 Steps of a learning episode. This corresponds to the contents of the Active

Learner box in Figure 4.1. 17

4.3 An example decision tree induced from the training set data in Table 4.1 on

rule 2. 21

5.1 Information about the analyses that we used to evaluate our BDD order

finding algorithm. The four columns of numbers are the number of rules,

relations, and domains in the input Datalog file, and the number of possible

domain orders. 27

5.2 The results of our learning algorithm. The first four columns of numbers

compare the speed of a random order, an order generated with a sifting

algorithm, our best hand-tuned order, and the order output by the algorithm.

∞ means that the analysis did not complete because it ran out of memory.

The next four columns give statistics on the performance of the learning

algorithm. 29

5.3 Brief program size information detailing the number of classes, methods,

and bytecodes for the input programs benchmarked in Figure 5.4. 29

5.4 A comparison of the run times of our hand-tuned and generated orders for

the j pa, j pacs and jpaos analyses on several different input programs. . . 30

v

Chapter 1

Introduction

Software bugs cost an estimated $59.9 billion a year in the US alone[36]. As code size and

complexity have increased, the traditional manual methods for code reasoning, testing, and

verification have proven inadequate. The growing chasm between the rate of increase of

code complexity and that of code quality has given birth to the field of program analysis.

Program analysis, the study of computer programs for the discovery of program proper-

ties, comprises both academic and industrial projects in the pursuit of better code quality.

However, the main challenge that we in this field face is not the difficulty in designing cut-

ting edge algorithms, but, rather, the inherent trade-offs between analysis scalability, qual-

ity/applicablity, and implementation complexity. Thebddbddb (Binary Decision Diagram

Based Deductive DataBase) program analysis framework, which John Whaley, Professor

Monica Lam, I, and others have built, aims to address these problems[24, 50, 53].

Thebddbddb system provides a flexible program analysis framework aimed at experts

and non-experts alike. Program analyses are represented by a declarative Datalog query.

This specification consists of sets of relations over input program elements and a sequence

of rules by which to combine them. These rules dictate the manner by which new, more

interesting properties are formed. Thebddbddb system then automatically compiles this

specification down to an optimized, low-level Binary Decision Diagram (BDD) based im-

plementation, which then executes over a given input program.

We have found these Datalog queries to be smaller and much easier to write than their

equivalent BDD-based manual implementations in Java or C++. For example, 3450 lines

1

CHAPTER 1. INTRODUCTION 2

of Java for one of our context-sensitive points-to analyses shrinks to 33 lines of Datalog

with the help ofbddbddb. Datalog provides analysis writers with a high-level specifi-

cation language that pushes the complex, intertwined issues of analysis performance and

implementation down intobddbddb. This abstraction puts the matter of optimized BDD

manipulation into the hands of BDD experts and, thus, makes analyses much easier to get

right due to their concision and simplicity.

As to generality, we, and others, have successfully used this tool to drive a number of

analyses, including both Java and C context-sensitive pointer analyses[2, 50] (both of which

were largely unfeasible previously), SQL-injection detection[24], static race detection[35],

finite tree automata analysis[18], and reflection-aware call graph construction[29].

The performance and scalability of our framework follows from our use of BDDs. The

BDD data structure can compact a large data set by exploiting the commonalities in the

data. With BDDs, we have scaled context-sensitive analyses to large programs even though

such analyses typically succumb to an exponential blowup in the data representation. While

it is possible for BDDs to represent context-sensitive analyses compactly, it is hard to find

such representations. The BDD representation choice (i.e., the BDD variable order) alone

can make the difference between an analysis that terminates in a few minutes versus one

that does not terminate at all. A considerable amount of manual search and reformulation

was needed to make our context-sensitive Java points-to analysis efficient. Our first formu-

lation of a BDD-based algorithm failed due to memory exhaustion even on small programs.

It took nearly six months to obtain an algorithm that handled medium-sized programs in

three hours, but it still failed to terminate when handling large programs. Our experience

taught us that the manual process of finding BDD representations is tedious, unintuitive,

and sometimes unfeasible given an analysis or input program. Thus, forbddbddb and,

even more generally, BDD-based program analysis to be of any practical use, the search

for BDD representations must be automated.

Contributions This thesis aims to make the following contributions to the field:

1. Insights into using BDDs for program analysis. Through the use ofbddbddb, we

have amassed considerable experience in both developing and optimizing BDD-

based programs. This thesis shares many of those insights, and may thus interest

those who use BDDs for program analysis.

CHAPTER 1. INTRODUCTION 3

2. A machine learning technique that automates the discovery of BDD representations

for BDD-based program analyses.

3. An effective demonstration of how machine learning and artificial intelligence tech-

niques can be adapted to suit the needs of programming analysis researchers.

Thesis Organization The rest of this thesis is organized as follows: Chapter 2 provides

an overview of the process by whichbddbddb compiles and executes program analyses.

Chapter 3 provides introductory background information on BDD representations and some

previous approaches to the problem. Chapter 4 details the active learning algorithm that we

use to automatically find BDD representations. Chapter 5 presents the experimental results

of our algorithm when used on a variety of program analyses. Chapter 6 discusses related

work from both the BDD and machine learning communities. Finally, Chapter 7 presents

our conclusions.

Chapter 2

The bddbddb System

This section presents a brief overview of thebddbddb system. Sincebddbddb itself is not

the main focus of this thesis, readers are encouraged to consult other publications for more

in-depth discussions of binary decision diagrams and the implementation of thebddbddb

system[24, 53, 50].

2.1 Binary Decision Diagrams

A BDD is a directed acyclic graph (DAG) with a single root node and two terminal nodes,

representing the constants one and zero. Each non-terminal nodet in the DAG represents

an evaluation of an decision variable and has exactly two outgoing edges: a high edge and

a low edge.t represents the boolean expression(tvar ∧ thigh)∨ (¬tvar ∧ tlow), wheretvar is

a decision variable,thigh is the expression represented by the node along the high edge of

t, andtlow is the expression represented by the node along the low edge oft. The root node

represents the boolean expression describingf .

To evaluatef for a specific input, one simply starts at the root node and, for each node,

follows the high edge if the corresponding decision variable is true, and the low edge if

the decision variable is false. The value of the terminal node that we reach is the value

of functionf for that input. Figure 2.1(a) gives an example of a BDD implementing the

function b1b2 + b3b4. Each non-terminal nodet is labeled with a decision variable, and a

solid line indicates a high edge while a dashed line indicates a low edge.

4

CHAPTER 2. THE BDDBDDB SYSTEM 5

10 10

(a) (b)

b
1

b
2

b
3

b
4

b
1

b
3

b
3

b
2

b
2

b
4

Figure 2.1: BDDs representing the functionb1b2+b3b4. The left figure (a) uses the BDD de-
cision variable orderb1, b2, b3, b4, while the right figure (b) uses the BDD decision variable
orderb1, b3, b2, b4.

bddbddb specifically uses a variant of BDDs calledordered binary decision diagrams,

or OBDDs[8]. In an “ordered” BDD, the sequence of variables evaluated along any path

in the DAG is guaranteed to respect a given totaldecision variable order. The choice of

decision variable order can significantly affect the number of nodes required in a BDD.

The BDD in Figure 2.1(a) uses variable orderb1, b2, b3, b4, while the BDD in Figure 2.1(b)

represents the same function, with variable orderb1, b3, b2, b4. In the worst case, the size of a

BDD can be exponentially larger when using a different variable order. Finding the optimal

variable order is an NP-complete problem[6]; thus, we use machine learning techniques to

automatically discover effective variable orders.

2.2 BDDs and Program Analysis

Binary decision diagrams (BDDs) were originally invented for hardware verification to

efficiently store a large number of states that share many commonalities[8]. Recently, it has

been shown that BDDs can also be used to efficiently solve various problems in program

analysis[2, 4, 50, 27, 53, 24].

Thebddbddb system translates high-level program analysis specifications, written in

Datalog, into BDD-based implementations. This allows one to specify and use advanced

program analyses without having to worry about the complexities of manipulating BDD

CHAPTER 2. THE BDDBDDB SYSTEM 6

data structures.

2.3 Specifying Program Analysis with Datalog

Many program analyses can be succinctly and declaratively specified in a logic program-

ming language called Datalog. A Datalog program consists of a set of domains, a set of

relations, and a set of rules. A domain corresponds to a universe of possible values. A

relation stores values from one or more domains. A rule specifies how to update a relation

based on the values in other relations.

To make the discussion more concrete, we present an example of an actual analysis

written in Datalog. Algorithm 1 is an actual Datalog program that implements inclusion-

based pointer analysis for Java. It is similar to the analysis of Berndl et al[4].

Algorithm 1 Context-insensitive points-to analysis with a precomputed call graph.

DOMAINS

V 262144
H 65536
F 16384

RELATIONS
input vP0 (variable : V, heap : H)
input store (base : V,field : F, source : V)
input load (base : V,field : F, dest : V)
input assign (dest : V, source : V)
output vP (variable : V, heap : H)
output hP (base : H,field : F, target : H)

RULES

vP(v, h) : − vP0(v, h). (2.1)

vP(v1, h) : − assign(v1, v2), vP(v2, h). (2.2)

hP(h1, f, h2) : − store(v1, f, v2),
vP(v1, h1), vP(v2, h2). (2.3)

vP(v2, h2) : − load(v1, f, v2),
vP(v1, h1), hP(h1, f, h2). (2.4)

�

There are three domains:V is the domain of variables in the program,H is the domain

CHAPTER 2. THE BDDBDDB SYSTEM 7

of heap objects, andF is the domain of fields. The numbers after the domain specifiers are

the maximum number of elements within a domain. There are six relations:vP0 is the set

of initial points-to relations,store is the set of store instructions in the program,load is the

set of load instructions,assign is the set of assignment instructions,vP is the set of points-

to relations from variables to heap objects, andhP is the set of points-to relations between

heap objects. Each of the relations has some number of attributes, each of which has a

domain. For example, thevP relation has attributevariable with domainV and attribute

heap with domainH.

The analysis consists of four rules. The semantics of Datalog are similar to Prolog: If

there exists an assignment to variables that makes the right hand side true, then the left

hand side is also made true. Rule (2.1) incorporates the initial variable points-to relations

into vP . Rule (2.2) finds the transitive closure over assignment edges. Ifv2 is assigned

to v1 and variablev2 can point to objecth, thenv1 can also point toh. Rule (2.3) models

the effect of store instructions on heap objects. Given a statement “v1.f = v 2; ”, if v1

can point toh1 andv2 can point toh2, thenh1.f can point toh2. Rule (2.4) resolves load

instructions. Given a statement “v2 = v 1.f; ”, if v1 can point toh1 andh1.f can point

to h2, thenv2 can point toh2.

2.4 From Datalog to BDDs

In bddbddb, relations are represented using BDDs as follows. Each elementd in an n-

element domainD is represented as an integer between 0 andn − 1 usinglog2(n) bits. A

relationR : D1× . . .×Dn is represented as a boolean functionf : D1× . . .×Dn → {0, 1}
such that(d1, . . . , dn) ∈ R iff f(d1, . . . , dn) = 1, and(d1, . . . , dn) /∈ R iff f(d1, . . . , dn) =

0. For example, thevP relation is represented using a BDD with 34 decision variables: 18

decision variables to represent thevariable attribute and 16 decision variables to represent

theheap attribute.

Each rule is translated into a sequence of relational algebra operations, such as join,

project, rename, etc. Each of the relational algebra operations is then translated into

its corresponding BDD operation. For example, a relational join corresponds to a BDD

“and” operation. While this translation may seem straightforward, we apply a number of

CHAPTER 2. THE BDDBDDB SYSTEM 8

both novel and traditional optimizations to the program at both the relational algebra and

BDD operation levels. These optimizations yield a sizable performance gain over naı̈ve

translation[53].

bddbddb finds a fixpoint solution by successively applying each rule until the relations

converge. The execution time of a BDD operation depends on the size of the input and

output BDDs, and not on the number of elements in the relation. As we demonstrated in

Figure 2.1, the size of the representation can vary greatly with the order of the decision

variables. Therefore, a good variable order is essential to an efficient BDD-based analysis.

Chapter 3

Background

3.1 Finding BDD Variable Orders

Finding the optimal order that yields an optimally small BDD for a given function is an

NP-complete problem[6]. While much progress has been on this problem in the way of

static heuristics[11, 9] and dynamic reordering techniques[43], existing approaches have

not proved effective in general[42].

Using BDDs to implement a relational database does provide a few important rules of

thumb on how variables need to be ordered. However, the run time depends greatly on the

characteristics of the inputs, the performance of an operation can vary significantly during

the course of single run, and furthermore, the order that yields the smallest BDD represen-

tation does not necessarily have the best performance (due to BDD cache effects). Thus,

we often find our primitive rules insufficient for whole program reasoning. By exhaus-

tively exploring a subset of the possible variable orders for a small program, we found that

there exists a small number of nearly best variable orders that dramatically outperform the

rest. Moreover, the features of these best orders are not immediately intuitive. When given

the best order for an analysis that we have worked on for months, we can only begin to

postulateex post factowhy the order works.

9

CHAPTER 3. BACKGROUND 10

3.2 Learning BDDs

More promising approaches have arisen via sampling[30] and machine learning[14] meth-

ods. Grumberg et al. studied the problem of using BDDs in hardware verification[20]. They

randomly sampled a number of variable orders, measured the size of the resulting BDD,

and then used machine learning techniques to derive the dominant characteristics of good

performing orders. From these characteristics they could then generate orders that were

comparable to those found using a static technique.

Such an approach, however, would not produce a desirable answer in our case. First,

because there are only a very small number of “nearly-best” orders among the huge search

space, random sampling may not be sufficiently representative. Second, it may take an

unreasonably long time to find the run time for each variable order, especially if they are

randomly sampled. Third, an approach that relies only on the total runtime of a program

would fail to discover the dynamic behavior of BDD evaluation and, further, miss opportu-

nities for sharing information among similar parts of the program.

3.3 Actively Learning BDDs

Our approach is to formulate the search for dominant program characteristics as anactive

learning problem. Rather than passively learning from alabeledset of independent and

identically distributed samples, an active learner takes an active role in selecting the data

to be labeled. The careful selection of inputs can greatly reduce the number of instances

needed to induce a classifier with an arbitrarily high accuracy[1]. In our case, labeling a

data set involves profiling the run time of the BDD operations with respect to a given vari-

able order. Active learning is formulated precisely for problems like ours where labeling is

costly; we can improve upon random sampling by choosing to label points that provide us

with the most information.

We can further adapt active learning to capture whole-program relationships by extend-

ing the basic technique withmulti-view decomposition. By constructing multiple views

of the program at various levels of locality, we can exploit whole-program similarity and,

thus, expose more program behavior. We can also adapt active learning techniques to our

CHAPTER 3. BACKGROUND 11

specific problem of optimization. The challenge in variable order optimization is that we

need to find a specific and small class of data points in a very large data space, namely

those that give the best execution times. Because we are not entirely interested in the clas-

sification of the rest of the space (unlike researchers in field of machine learning) we have

the opportunity to make this potentially expensive learning process run faster by biasing

our search towards areas that may yield good results.

Chapter 4

Active Learning Algorithm

This section provides a description of the BDD variable order problem space, a general

formulation of our variable order learning algorithm, and details on the integration and

implementation of our algorithm in thebddbddb framework.

4.1 The Problem Space

A relation in an analysis typically has from 2 to 8 attributes, each of which may be allo-

cated up to 60 decision variables. It is not uncommon for a BDD in a program analysis

to use about 200 decision variables. Theoretically, there aren! possible orders for each

relation wheren bits are used. Fortunately, we can reduce the choice of variable orders by

exploiting the high-level semantics of relations.

Because bits within a domain represent the same type of data, they are likely to be

correlated, and therefore we do not consider permutations of bits within a domain. In any

case, elements within a domain can be deliberately numbered so that similar elements will

have similar numberings [50]. Therefore, each attribute in a relation can be considered as

a unit. For each pair of attributesa1 anda2 in a relation, orderings between the pair are

reduced to three choices: decision variables fora1 precede those ofa2, written a1 < a2,

decision variables fora2 precede those ofa1, writtena1 > a2, decision variables fora1 are

interleaved with those ofa2, writtena1 ∼ a2.

The number of possible variable orders in this new model is given by the sequence of

12

CHAPTER 4. ACTIVE LEARNING ALGORITHM 13

ordered Bell numbers[49], which grows rapidly. The number of orderings for 1 through 8

variables are 1, 3, 13, 75, 541, 4683, 47293, 545835.

4.2 Problem Characteristics

As discussed in Section 1, we have performed exhaustive searches over subsets of the

search space of BDD variable orders. Our observations from this experience, as outlined

below, led us to the conclusion that active machine learning is the correct approach to

solving this problem.

The problem is complicated; simple heuristics do not work well. We have spent

several months studying the efficient variable orders discovered by our exhaustive search

in order to define general heuristics. We were unable to find any such heuristics. However,

We were able to find some small insights; for example, if two variables are required to be

equivalent, then interleaving their bit representation is effective. Also, the orders used for

large input BDDs can be used as a guide. However, these small insights do not lead to the

efficient variable orders that we found.

Some features characterize the problem well.The relative order of a particular subset

of all variables typically decides the execution time of the ”nearly best” answers. This order

can be represented as a set of pair-wise ordering constraints or, as we will refer to them,

features. However, one must be careful during algorithm design as some of the features

may be correlated.

Presence of critical rules. The performance of an analysis is often dominated by a

small subset of the rules. While some optimization decisions can be considered on a rule-

by-rule basis, there may still be different order preferences among a set of rules. Ideally,

a relation used by two different rules should have the same order so as to avoid poten-

tially expensive reorderings. Therefore, information from rules that operate on the same

relations/domains should be shared.

Dynamically varying behavior. Different applications of the same rule typically favor

the same variable ordering; however, that is not necessarily the case. In the iterative process

of resolution, the nature of the inputs for a rule may change and, thus, the representation

may require a different variable order.

CHAPTER 4. ACTIVE LEARNING ALGORITHM 14

The search space is not smooth.Because certain features can have a significant impact

on performance and these features are often correlated, the search space is not smooth. The

best variable order may be very similar to one which blows up; the difference may be

merely one or two features.

Trials are expensive. It is not unusual for a rule application to take two minutes to

execute even with a relatively good variable order. Good orders can outperform bad ones

by many orders of magnitude.

Feasibility is not guaranteed. There are problems for which there is no order that

yields a compact answer. Sometimes, it is possible to manually improve the Datalog query

of an analysis by avoiding the generation of large intermediate sets of data. However, there

is still no guarantee as to whether the analysis will finish.

In sum, the BDD variable order problem is not easily conquered by simple heuristics.

Those few that we have found do not produce accurate generalizations. In our experience,

profiling has been the only technique to yield results. However, knowing what to profile

is difficult to discern manually as the space of variable orders is so large. Exhaustive

exploration has, until now, proven to be our only reliable resource. But, as our program

analyses have become larger and more complex, this approach has become prohibitively

expensive.

4.3 Approach and Formulation

Our solution to the BDD variable order problem adopts an iterativesample-learn-extract

approach. For a particular set of variables, we sample a subset of the variable order space

and label each instance with a quality metric. From the set of labeled orders we employ

machine learning algorithms to learn a classification system that maps arbitrary variable

orders to predictions of quality. We then extract the relevant features from our classifica-

tion system. By iterating the algorithm and summing our samples across iterations, we

can incrementally create better, more general classification systems. This entire process is

tightly integrated intobddbddb.

CHAPTER 4. ACTIVE LEARNING ALGORITHM 15

4.3.1 Sampling

Random sampling is a common sampling technique for applications such as ours. However,

we improve on random sampling by incorporating previously learned information into the

sampling decision. By uncertainty sampling the space, we sample those orders for which

we have the least information; their labeling and addition to the sample set yields the largest

gain in information. Furthermore, this technique produces higher quality classification

systems with fewer data samples [12, 25].

4.3.2 Learning

A wide variety of algorithms for constructing classification systems exist. Through the em-

pirical evaluation of several classification algorithms, we have found decision trees to be

well suited for our problem as they are computationally inexpensive to create, comprehen-

sible in structure, and give quality classifications for our domain. Decision trees represent a

class of algorithms that recursively partition data by feature values to make classifications.

We use an ensemble of perceptually different decision trees to both increase classification

quality and capture whole program relationships.

4.3.3 Extraction

Feature extraction for our domain is non-trivial. Due to possibly inconsistent requirements

different rules, dynamically changing inputs, and the inherent fuzziness of the BDD vari-

able order space, greedy heuristics do not work well for collecting consistent sets of fea-

tures. To address these issues, feature extraction is modeled by a Fuzzy-Constraint Satis-

faction Problem (FCSP). Fuzzy constraints associate a real-valued notion of satisfaction to

a constraint. For example, in addition to the traditional boolean notions of a fully satisfied

and a fully violated constraint, fuzzy constraints can be partially satisfied. This representa-

tion allows us to encode fuzzy variable order preference information and, thus, generate a

number of ranked solutions.

CHAPTER 4. ACTIVE LEARNING ALGORITHM 16

Figure 4.1: The learning algorithm embedded in Datalog resolution.

4.3.4 Integration

Figure 4.1 shows how we integrated machine learning intobddbddb. The system starts by

applying a Datalog rule to infer new relations. If the application of the rule takes longer

than a specified threshold, we invoke the active learning algorithm. The active learner uses

a training set of data that persists across different invocations ofbddbddb. If the learner

performs any new trials, they are in turn added back into the training set. The system

continues applying rules until the relations converge. At that point, we use the data in

the training set to infer and report the information discovered. From this report we can

take a number of actions, such as refining or generating an order. We can then evaluate

the new variable order or refine it further by repeating the entire process until we obtain a

satisfactory variable order. Repetition ensures that all relevant rules are analyzed as a new,

learned order may run slower on rules that previously executed quickly.

CHAPTER 4. ACTIVE LEARNING ALGORITHM 17

Calculate best
untried order

Good
enough?

Training Set

Y

N

Run order

Generate
candidate set

Uncertainty
Sampler

Do 1 trial

done

Figure 4.2: Steps of a learning episode. This corresponds to the contents of the Active
Learner box in Figure 4.1.

4.4 Algorithm Details

Figure 4.2 shows the steps of one invocation of the learning algorithm, called a learning

episode. First, we build a candidate generator (described in Section 4.4.2) from the training

set (Section 4.4.1) to predict the best untried order. This order serves as a baseline mea-

surement, allowing us to abort rule applications for which sampled orders take significantly

longer than our baseline. This is important as rule applications with poorly performing sam-

pled orders can take exponentially longer to complete. Moreover, the quality of this order

also gives us an online indication of the quality of our classification system. We then gen-

erate a candidate set of orders from which an uncertainty sampler (Section 4.4.3) selects an

order, or set of orders, to add to the trial set. If the trial set is non-empty, these orders are

tried, the results are incorporated into the training set, and the process repeats; otherwise,

we end the learning episode.

CHAPTER 4. ACTIVE LEARNING ALGORITHM 18

Episode Rule Update Operation Order Time Class

1 2 1 1
v1 < v2 < h 5ms 1
v2 < v1 ∼ h 15ms 1
h < v2 < v1 50ms 2

2 3 1 1
v1 < f < h2 < v2 < h1 ∞ 1
v2 < h1 < h2 < f < v1 1000ms 1

3 2 2 3
v2 ∼ v1 < h 10ms 2
h ∼ v2 < v1 50ms 2

Table 4.1: The grouping of the data entries in our training set. Each episode is tied to a
particular rule, rule application, and operation within the rule. Within each episode, the
order along with its run time is stored. The class column is used only for the example
presented by Figure 4.3.

4.4.1 Data Sets

The training setconsists of the learning episodes we have executed thus far. Table 4.1

depicts the association of each learning episode with a particular rule, rule update, and

BDD operation within that rule, along with the set of trials that it encompasses. Each

trial of the episode is paired with its execution time. If there are no previous trials at the

beginning of a new episode for a particular rule, rule update, and operation, we bootstrap

the training set by trying a set of randomly generated orders.

The candidate setis the reduced space of orders that we would like to consider. As

mentioned earlier, the candidate generator creates this set by generating partial orders that

exhibit features that are either unseen or known to be good. The candidate generator then

populates the candidate set with the enumeration of all total orders that follow from these

partial orders.

In the vein of active learning, thetrial set is the subset of orders in the candidate set that

have been actively selected for labeling. Our adoption of uncertainty sampling dictates that

we add to this set those orders that we know the least about. We estimate this criterion by

find those orders for which the probability of being within the top class of orders is closest

to 50%. If no orders are sufficiently close (given by a parameter), this set is empty.

CHAPTER 4. ACTIVE LEARNING ALGORITHM 19

4.4.2 Candidate Generator

A classifier can be loosely described as a function that accepts a vector of features and

returns a classification. For our problem, as discussed in Section 4.1, we use pairwise

ordering constraints as “features”: given two elements, one can either occur before (<),

after (>), or be interleaved (∼) with the other. Features in a given variable ordering should

form a partial order. A classification is an element in a set ofperformance classes. This set

of performance classes is determined by the discretization of run-times into a finite number

of classes.

Multi-View Decomposition

Although each learning episode focuses on just one rule, information learned from other

rules can also be relevant because these rules may operate on the same relations or the

same domains. We usemulti-view decompositionto integrate information from all these

different sources. Therefore, the candidate generator is actually composed of the following

three classifiers induced from three translations of the training set.

1. For each rule, we have a “variable” classifier to gauge the utility of an order on the

operations of just that particular rule. The features for these instances are the pairwise

orderings of the rule’s variables. Thus, for Rule (2.2) in Algorithm 1, these features

are the pairwise orderings ofv1, v2, h.

2. The “attribute” classifier incorporates global information about the quality of orders

over the relational attributes used by a rule. For a classifier of this type, we translate

variables to their relation attributes. Thus, for Rule (2.2), the features used are the

pairwise orderings ofvP variable , vPheap, assigndest , assignsource . Translations that

lead to contradictions are dropped.

3. The “domain” classifier makes reasonable, but possibly imprecise, decisions about

the quality of an order as it relates to all rule applications that have used a related

set of domains. This classifier is best quantified as a binary decision between truly

poor orders and ones that stand a reasonable chance of termination. A classifier of

this type for Rule (2.2) uses the pairwise orderings of the domains of its variables:

CHAPTER 4. ACTIVE LEARNING ALGORITHM 20

(V,V) and (V,H). As in the attribute classifier, translations that lead to contradictions

are dropped.

Classifier Induction

Each feature vector is paired with the performance, measured in run time, of the variable

order from which it was derived. We have investigated machine independent metrics for

order performance to allow for portable datasets, but we have found these metrics to be

difficult to extract and imprecise in nature. To compare trials over the span of different rule

applications, trials are normalized against the best observed run time for a rule application.

To discretize the run time results, we use an equal frequency binning algorithm to extract

relative performance classes from our continuously scored trials. In our experience, this

approach is preferable to an equal width or clustering approach as we gain the explicit

interval refinement of clustering with the lower overhead of equal width binning.

An appropriate number of bins must be chosen to reflect the degree of precision ex-

pected. The “rule,” “attribute,” and “domain” classifiers are progressively less precise as

each incorporates more, possibly tangential or incomplete, information. Thus, the number

of performance classes for these three classifiers are
√

n, 4
√

n, and 2, respectively, where

n is the number of trials seen. The domain classifier incorporates so much conflicting

information that we have found it useful only for distinguishing between acceptable and

extremely poor orders. Hence, the domain classifier has only two bins.

Classifying an instance with a decision tree begins by querying the value of the attribute

designated at the root node of the tree. This value is then used to select the next node to test

against. This procedure continues recursively until it reaches a leaf node. The classification

recorded for this leaf node is returned as the classification for the instance. The value of

this classification can vary with application. For discrete applications, the classification of

the majority of training set instances that occupy the node is often returned. Also, as shown

in Figure 4.3, a node may have no successor for a particular attribute value. In this case,

a value denoting no classification is returned. We later exploit this fact to encourage the

algorithm to explore unseen features.

There many extensions to this basic algorithm that are tailored for different notions

of classification accuracy and speed. Our classifiers are induced using Quinlan’s simple

CHAPTER 4. ACTIVE LEARNING ALGORITHM 21

1

v1,v2

1

< ~ >

v1,h

21

~ >

Figure 4.3: An example decision tree induced from the training set data in Table 4.1 on rule
2.

ID3 algorithm[40]. ID3 partitions a dataset on the attribute with the highest information

gain (IG). Information gain computes the estimated reduction in entropy resulting from the

partitioning of the dataset on a particular attribute. By giving priority to attributes with a

higher information gain, we aim to produce short trees with high degrees of generalization.

Information gain can be computed as follows:

I(S) =
n∑

c∈S

−pc log pc

I(A, S) =
∑
v∈A

|Sv|
|S|

∗ I(Sv)

IG(A, S) = I(S)− I(A, S)

I(S) is the information (or entropy) of a set of instances (S) wherepc is the proportion

of instances of classificationc in S. I(A, S), the information of a set of instances (S) given

an attribute (A) partition, is the weighted sum of information for each subset of instances

grouped by attribute value (v). Thus,IG(A, S) is the information gained by a partition of

instance setS on attributeA.

For each node in the tree, the information gain of each attribute is computed. The set

of instances is then partitioned by the attribute with the highest expected information gain.

The algorithm then recurses on each subset until no further information can be gained by

CHAPTER 4. ACTIVE LEARNING ALGORITHM 22

partitioning.

Candidate Set Generation

For each rule, the candidate generator is used to generate both the best untried order for

baseline calibration and the candidate set from which the uncertainty sampler chooses the

trial set. As mentioned before, we wish to run the fastest order first in order to establish a

baseline execution time for this operation. If subsequent trials begin to take substantially

longer than our baseline, we abort the computation and assign it a large value for execution

time.

To find the best predicted order we combine the information from the variable, attribute,

and domain classifiers as follows: A performance class is assigned a score equal to the mean

run time of the members of that class. The scores from each classifier are weighted by a

factor related to the history of its accuracy. Correct classifications increase the classifier

weight, incorrect classifications decrease it. We use an exponential decay function to di-

minish the penalties for mispredictions that occurred in the past. This provides a feedback

mechanism that automatically adjusts the weights based on the actual problem; depending

on the problem, certain classifiers may be more or less accurate than others.

Because there are typically far too many orders to iterate over for an operation, we

extract the features that lead to the best order directly from the classifiers. This problem

is complicated by the fact that we have three separate classifiers and that the progression

of scores in the performance classes of the classifiers is non-linear. We solve this by first

computing the scores from every possible combination of classes and then sorting the com-

binations by their scores. We use the sorted combinations of classes to extract the features

from each classifier and combine them, skipping combinations that lead to constraints that

cannot be combined.

The features collected so far represent a set of constraints. A simple procedure can

enumerate all the total orderings that satisfy these constraints. From this set of total or-

derings we can select the best predicted untried order or the topn candidates to populate

the candidate set. To include in the candidate set feature combinations that have not been

evaluated before, nodes with no instances in the decision trees (i.e., leaf nodes that return

no classification), are boosted to have the highest performance class.

CHAPTER 4. ACTIVE LEARNING ALGORITHM 23

Since we bootstrap the process by a set of randomly generated orders (Section 4.4.1),

the initial order is never considered unless it is independently generated by this process.

4.4.3 Uncertainty Sampler

The goal behind our selection of variable orderings is to maximize information gain by

trying orderings that carry the greatest uncertainty. While this may seem orthogonal to our

goal of optimization, it has been shown that relevance sampling[47] (selecting the input

classified as the best) produces poor classifiers compared to those produced by uncertainty

methods[26].

For our problem, we are interested in knowing if a given variable ordering falls in the

top performing class. We refer to the top performance class as the positive class and to the

rest as the negative class. An instance is given probability 1 if it definitely belongs to the

positive class and 0 if it definitely does not. Thus a probability of .5 represents maximum

uncertainty.

Probability Estimate Trees (PETs) have been shown to be useful Class Probability Esti-

mators (CPEs). A primitive PET constructed from a decision tree returns the distribution of

instance classifications at a leaf node, rather than a single classification. This distribution

is then interpreted as the probability that an instance with the given features is in a partic-

ular class. However, this is a poor measure of uncertainty in the case where the number

of instances at a node is small. We smooth probability estimation for relatively unpopu-

lated nodes by computingkc+1
n+C

, wherekc is the number of instances with labelc in the

population of the leaf node,n is the total number of instances at that node, andC is the

total number of classes. In our case, since we are distinguishing between a positive and a

negative performance class,c = 2. Thus, the probabilities of nodes with fewer instances

are shifted toward .5. This technique is known as Laplace correction.

A Bagged Probability Estimate Tree (BPET) constructsk trees, where each is induced

from a bootstrap sample[15] of the training set. A bootstrap sample is a random sample

with replacement. The class probability estimate for the BPET is the average of the prob-

ability estimates over allk randomly permuted trees. Just as in multi-view decomposition,

an ensemble of perceptually different classifiers often leads to more robust classifications

CHAPTER 4. ACTIVE LEARNING ALGORITHM 24

and, hence, more accurate class probability estimates.

We use Laplace correction and BPETs to create three estimators—one each for rules,

attributes, and domains—from the training set. The probability estimate for a particular

variable ordering is computed by combining the probability estimates of each estimator.

The score attributed to a given variable order from the candidate set can be computed as

the distance from a chosen centroid by using a root-mean-squared computation:√
(Er −R)2 + (Ea − A)2 + (Ed −D)2

3
,

wherePr, Pa, andPd are the class probability estimates returned by our rule, attribute and

domain classifiers, andR,A, andD are the centroids of focus for our search. As uncertainty

sampling dictates, to choose the order that has the most uncertainty, we would setR, A,

andD to be .5, and find the order with the smallest score. Thus, a score of 0, given these

centroids, would indicate that our all three of our estimators predicted a class probability

of .5. However, we have found that by adjusting these centroids appropriately, we can

direct the focus of our search: a lower centroid biases the search toward more exploration,

while a high centroid directs the search to areas of higher confidence. Since our domain

classifier data is best suited for determining extremely poor orders, we bias its centroid

toward searching orders it deems relatively good. As a result, the initial trials for newly

encountered rules typically follow the optimal global scheme.

4.5 User feedback

At the end of the learning process, we can present a variety of outputs for the user to

query. For each rule on which a learning episode has executed, we can retell the top n-best

executed orders. Moreover, for any rule that has variable, attribute, or domain information

associated with it (including those not directly considered during learning) we can generate

the top n-best predicted orders or the constraints associated with those orders as in Section

4.4.2. Another more useful utility is the generation of global constraints that can be used

to generate an entirely new order or to improve an existing order.

Global constraint generation is complicated by the fact that we have a distributed record

CHAPTER 4. ACTIVE LEARNING ALGORITHM 25

of runs; our trials span across rules of varying runtime and hence, importance. Also, dom-

inant performance features for a collection of rules are not necessarily consistent. As a re-

sult, we have constructed this problem as a Fuzzy Constraint Satisfaction Problem (FCSP)

[44].

A FCSP can be defined by the tuple(V, D, C, J), whereV is a set of variables,D is a

list of domains for the variables, andC is a set of fuzzy constraints.J is a function that

computes thejoint satisfactionof a partial assignment of values fromD to variables inV

over the fuzzy constraints inC. For our purposes, the set of variables is the set of physical

BDD domains. D consists of a single integer domain of values between 1 and|V | that

is shared among all variables. Thus, one can consider a variable assigned a value as an

assignment of a domain to a fixed position in a total ordering of all domains. This allows

us to express precedence constraints and interleaved constraints if we consider domains

assigned to the same position as interleaved.

A fuzzy or soft constraint is a mapping of tuples of values for its input variables to a

local degree of satisfaction, measured as a floating point value on the interval [0,1] (where

0 denotes full violation and 1 denotes full satisfaction). A solution to a FCSP thus consists

of a complete assignment of values fromD to all variables ofV and an estimate of the

solution’s global or joint satisfaction of the constraints. Ruttkay and others have defined

several means for determining the joint satisfaction of a set of constraints. For instance,

joint satisfaction can be computed as the minimum local satisfaction among all constraints,

the multiplicative product of the local satisfactions of all constraints, or the average sat-

isfaction of all local satisfactions. We have chosen to maximize the average of the local

satisfactions as it seems the most applicable to our problem.

Several heuristic methods have been proposed for solving FCSPS [21]. Of these, a

branch and bound approach is the most straightforward. This technique relies on the fact

that the joint satisfaction of a partial assignment serves as an upper bound for any further

extension of the assignment. This allows us to prune sections of the search tree. The al-

gorithm proceeds as follows: it first checks whether the current joint satisfaction is lower

than the joint satisfaction of the best solution thus far. If so, further exploration of this

subtree is avoided. Next, if the current assignment is a complete assignment, it is recorded

as a solution and execution returns to the previous level. Otherwise, the algorithm chooses

CHAPTER 4. ACTIVE LEARNING ALGORITHM 26

a variable from the set of variables that have yet to be assigned. For each value in this

variable’s domain, the assignment is extended and the algorithm proceeds recursively. It

is common practice for the ”most constrained” variable to be selected and the values to be

iterated in the ”least constraining” order so as to maximize the likelihood of finding a solu-

tion early. These ordering heuristics are derived from perturbations of the joint satisfaction.

By giving priority to rules with longer execution times, the fuzzy constraints for this al-

gorithm can be generated to simulate weighted voting. For each rule, sets of constraints that

lead to high performing orders are generated as described in Section 4.4.2. Each individual

constraint is given a score computed as its parent constraint set’s performance multiplied by

the total execution time of the rule. The votes for a pair of BDD domains and its different

orientations (before, after, or interleaved) are totaled globally and a fuzzy constraint for the

pair of domains is created. This fuzzy constraint maps a physical assignment of the two

domains to an associated orientation and returns the proportion of votes for that orientation

as its local satisfaction.

The physical assignment outputted by the FCSP can then be enumerated to generate the

selected ordering constraints. These constraints are then presented to the user, and either

a new order is generated or, in the case when small or local learning was performed, an

existing order can be made consistent.

Chapter 5

Experimental Results

This section presents the experimental results we obtained by using our system to discover

variable orders for various BDD program analyses.

5.1 Methodology

To evaluate the effectiveness of our technique, we used the active learning algorithm to

discover variable orders for a variety of analyses. We then evaluated the quality of the

resulting orders.

Name Description Rules Relations Domains Orders
j pa Java context-insensitive pointer analysis 8 20 12 2.8× 1010

j pacs Java context-sensitive pointer analysis 12 25 14 2.3× 1014

j paos Java object-sensitive pointer analysis 9 20 15 5.3× 1015

sqlinject SQL injection query for Java 20 19 17 3.9× 1018

c pa C context-insensitive pointer analysis 222 85 13 5.3× 1011

c pacs C context-sensitive pointer analysis 249 112 14 1.0× 1013

Figure 5.1: Information about the analyses that we used to evaluate our BDD order finding
algorithm. The four columns of numbers are the number of rules, relations, and domains
in the input Datalog file, and the number of possible domain orders.

Figure 5.1 shows the list of analyses that we used to evaluate the effectiveness of our

algorithm. Many analyses written forbddbddb are simple and execute quickly, so we

focused on the ones we have found to be the most time-consuming because they require

27

CHAPTER 5. EXPERIMENTAL RESULTS 28

the computation of a fixed-point solution. These analyses are the ones that can benefit the

most from improving the variable order.

Although, from their descriptions, some of these analyses may appear to compute sim-

ilar information, the listed analyses have vastly different performance characteristics. The

extra context information in the context-sensitive analyses completely dwarfs the rest of

the analyses as compared to their context-insensitive counterparts. Likewise, the C analy-

ses are very different from the Java analyses. The C analyses are far more complex, having

to deal with internal pointers, pointer arithmetic, pointers to stack variables, etc.; this extra

complexity is evidenced by the fact that the C analyses have 20 times as many Datalog

rules as the Java versions.

Of all the analyses, the context-sensitive C pointer analysis poses the greatest difficulty

for our algorithm because the high number of rules and relations lead to an extremely large

search space. Good variable orders within the space are rare, and optimal orders for one

rule often conflict with those for other rules.

We performed all experiments on an AMD Opteron 150 with 4 GB of RAM running

RHEL v3. Thebddbddb system uses the JavaBDD library[52], which is based on the

BuDDy BDD library[28]. For all experiments, we used an initial node table size of 10M

and a cache size of 2M. We used our hand-tuned order to generate the input relations for

learning (as stated in Section 4.4.2, this has no effect on the learning process). The initial

relations for the Java analyses were generated by the Joeq compiler infrastructure[51]; the

C analyses used the SUIF compiler[54]. We trained the Java analyses usingjoeq as an

input program; for the C analyses, we trained onenscript .

We used the following parameter values:

• minimum run time for an operation to be considered: 100ms/10ms1

• minimum number of orders to evaluate per operation: 10

• top proportion of performance classes to add to candidate set: 1/2

• number of candidate orders for evaluation: 500

• location of centroid (see Section 4.4.3): (0.5,0.5,1)

• cutoff score for deciding whether a trial should be performed: 0.25

1For the C analyses, we used a value of 10ms. For all others, we used 100ms.

CHAPTER 5. EXPERIMENTAL RESULTS 29

• delay past best time before killing a trial: 10s

Both of the C analyses have a large number of rules that execute many times very

quickly. We found that with a minimum time threshold of 100ms, too few rules were con-

sidered during the learning process; this led to poor performance as the learning algorithm

did not have any information about the missing rules. As a result, we lowered the threshold

for these two analyses to 10ms.

5.2 Results

Name Random Sifting Hand- Active Episodes Trials Unique Learning
tuned Learning Orders time

j pa 379s 107s 11s 9s 132 636 97 38m
j pacs ∞ ∞ 211s 209s 1006 2554 1294 4h 14m
j paos ∞ ∞ 53s 51s 160 1301 819 1h 57m
sqlinject ∞ ∞ 39s 33s 213 1450 1101 2h 15m
c pa 30s 1570s 19s 4s 238 1901 1714 3h 7m
c pacs ∞ ∞ 220s 65s 516 2784 2601 6h 47m

Figure 5.2: The results of our learning algorithm. The first four columns of numbers com-
pare the speed of a random order, an order generated with a sifting algorithm, our best
hand-tuned order, and the order output by the algorithm.∞ means that the analysis did
not complete because it ran out of memory. The next four columns give statistics on the
performance of the learning algorithm.

Name Description Classes Methods Bytecodes
sshdaemon SSH daemon 485 2053 115K
azureus Java bittorrent client 498 2714 167K
jgraph graph-theory objects and algorithms 1041 5753 337K
umldot makes UML class diagrams from Java code 1189 6505 362K
jxplorer ldap browser 1927 10702 645K

Figure 5.3: Brief program size information detailing the number of classes, methods, and
bytecodes for the input programs benchmarked in Figure 5.4.

Figure 5.2 contains the results of our learning algorithm. We compared the execution

times to those of a randomly-generated order, an order generated by a sifting algorithm,

CHAPTER 5. EXPERIMENTAL RESULTS 30

Name
j pa j pacs j paos

Hand-tuned Learned Hand-tuned Learned Hand-tuned Learned
sshdaemon 5s 4s 41s 39s 9s 8s
azureus 5s 4s 48s 47s 9s 8s
jgraph 17s 12s 312s 300s 48s 45s
umldot 19s 13s 216s 214s 78s 73s
jxplorer 38s 32s 581s 574s 26s 25s

Figure 5.4: A comparison of the run times of our hand-tuned and generated orders for the
j pa, j pacs and jpaos analyses on several different input programs.

and to our best known, hand-tuned variable order. The random order was very poor and

was able to complete in only two of the cases. The sifting algorithm, a traditional dynamic

BDD variable order optimization technique [43], also performed poorly.

The hand-tuned variable orders were the best orders we knew about before running our

learning algorithm. The fact that our algorithm was in all cases able to find an order that

was competitive with or soundly beat our “best” hand-tuned variable order without any

kind of seeding or user direction is heartening. This seems to indicate that our algorithm is

not getting stuck in local minima and is effective in finding a good order.

In the cases of jpa and jpacs, we had actually run a mostly-exhaustive search of all

possible variable orders to obtain our hand-tuned orders. These searches took many days to

complete. When our learning algorithm did not return the order we had found by exhaustive

search, we were initially dismayed. However, after we tried the orders from the learning

algorithm we found that one of them was actuallyfasterthan the supposed “best”! Upon

closer investigation, we realized that we had run the exhaustive search on an older machine

with a smaller operation cache size and an older version of the BDD library. The combina-

tion of a newer machine, a newer version of the BDD library, and a larger operation cache

size changed the best order for the analysis.

Figure 5.4 shows the generalization of the generated orders over the other input pro-

grams listed in Figure 5.3. The algorithm proves to generate general orders as these orders

show performance gains in all instances.

Chapter 6

Related Work

Finding BDD variable orders.BDD variable order optimization is a well-studied problem.

Over the years, researchers have proposed static heuristics, dynamic reordering techniques

and, more recently, search and sample techniques.

Static approaches seek to develop heuristics by which BDD orders can be statically syn-

thesized by structural inspection of the boolean function itself (typically a circuit descrip-

tion). Fujita and others have proposed techniques that inspect properties such as variable

depth and pair-wise variable distance [17, 11]. While static techniques are computationally

inexpensive to apply, they do not produce high quality results for many applications. In our

case, the primitive properties that these methods inspect are not readily producible for our

Datalog programs. Moreover, these methods would fail to capture the dynamic properties

of our problem.

Dynamic reordering techniques apply variable order modifications to the BDD as it is

manipulated in real-time. Sifting, the canonical dynamic technique, continually swaps ad-

jacent BDD variables until a reasonable order is found [43]. Others have developed more

advanced modification algorithms, such as variable grouping[37], for the sifting frame-

work. While these methods have found many practical applications, they are extremely

expensive in both memory consumption and computation time and often get stuck in local

minima. In addition, these methods fail to provide an intuitive decomposition of variable

orders into dominant features.

Recent work has focused on sampling-based search and learning processes. Bollig

31

CHAPTER 6. RELATED WORK 32

improved on previous efforts to develop a simulated annealing solution [5, 33]. Other re-

searchers have also used used genetic algorithms[14] and scatter search[23] to find good

variable orders. While these approaches can generate large sets of variable orders from

which one could extract similarities, they fail to explicitly provide any intuitive abstrac-

tion of the problem. Moreover, these algorithms are tailored for optimizing one BDD as

opposed to the dynamic multi-BDD environment we must deal with. However, their use

static heuristics to bootstrap the search process and dynamic reordering techniques to define

sample neighborhoods could complement our learning approach.

Machine learning BDD variable orders.Grumberg et al. has tackled the BDD variable

order problem with machine learning[20]. Their framework is inherently different from

ours, as they lack the high-level notion of domains and, instead, seek to order individual

BDD variables. Thus, we can search more effectively, as their search space is factorial

in the number of individual BDD variables, whereas ours is exponential in the number

of domains. Their implementation also differs significantly: while they mention active

selection of training data as a possibility, their results are based on the selection of relatively

arbitrary orders. Also, they use low-level BDD properties (e.g. , variable connectedness) as

features in their machine learning algorithms, while we have chosen the pairwise ordering

of domains. Moreover, they evaluate the performance of an order based on the size of the

BDD it creates, while we have noted that smaller BDDs do not necessarily mean faster

BDD operations as cache behavior plays an important role.

Probability Estimate Trees.A number of extensions to Probability Estimate Trees

(PETs) have been suggested to increase their usefulness as Class Probability Estimators

(CPEs). Laplace correction and m-estimators[10, 39, 55] can smooth the jagged probabil-

ity curves of standard PETs. Bootstrap aggregating (Bagging)[7], has also been shown to

increase the effectiveness of PETs[3, 39, 46]. Our approach employs both Laplace correc-

tion and bagging. In addition to Laplace correction, m-estimation, and bagging, researchers

have proposed probability-focused decision tree induction algorithms, splitting criteria[38],

and tree growth conditions[32, 55] aimed at increasing PET performance. However, some

approaches appear better suited for large data sets than small data sets such as ours.

Ensemble classification.Ensemble classification proposes that through the combina-

tion of an ensemble of perceptually different domain experts one can increase the accuracy

CHAPTER 6. RELATED WORK 33

of classification. Bootstrap Aggregating (Bagging) increases performance through the vote

of several classifiers, each built upon different bootstrap samples of the original data[7].

Boosting, in its various incarnations, combines the vote of trees that are sequentially gener-

ated from reweighted data[16]. Furthermore, rather than alter the data representation, Ho et

al. have found that a combination of classifiers induced by stochastic algorithms can yield

gains in classification performance[22].

Bagging, where trees can be substituted for any classifier, has been shown to work well

with unstable classifiers—classifiers in which small variations in data produce large vari-

ations in prediction[3]. Given the unstable nature of decision trees and the nature of our

domain, where the lack of a single feature can mean the difference between a good order

and one of exceptionally poor performance, we believe these methods match our domain

well. Moreover, Zhou et al. have observed that bagging performs better than similar al-

gorithms on problems with fewer data points[56], another characteristic of our domain.

Moreover, many other researchers have achieved positive results with bagged decision

trees[3, 7, 13, 31, 41].

Active learning.Active learning and its cousin active classifiers[19] have found a niche

application in settings where a premium is placed on the proper selection of inputs as of-

tentimes data collection is expensive. Thus, the means by which new instances are selected

have received a variety of treatments. Sueng and Freund have proposed that the informa-

tion gain of a candidate instance can be quantified by the level of disagreement among an

ensemble or committee of classifiers[48]. Saar-Tsechansky and Provost have put forth the

notion that the potential gain for an instance is related to the variance in probability esti-

mates over an ensemble of class probability estimators[45]. Their results have shown that

variance-based methods can substantially outperform uncertainty sampling when paired

with weighted sampling: new instances are selected from a distribution closely related to

the variance of probability estimates across the entire space of candidate instances. How-

ever, in our empirical evaluation, we found that the sampling decisions made by variance-

based methods do not intuitively follow from the information learned thus far. Since ob-

servation of the automated learning process can be a valuable tool for reasoning about an

analysis, we have instead used uncertainty sampling. Furthermore, we believe we suffer

no substantial loss of learning quality as Saar-Tsechansky and Provost also found weighted

CHAPTER 6. RELATED WORK 34

uncertainty sampling to be competitive with their variance-based method[46].

Multi-view active learning.Muslea et al. have explored the area of multi-view active

classification with their co-testing framework, wherein multiple classifiers are constructed

from disjoint sets of features and instances selected based on the degree and confidence

of misclassification among these views[34]. They found that the strengths of multi-view

approaches lie in their ability to identify rarely occurring, but still relevant, instances from

sparse data sets. The BDD variable order space exhibits this exact property and, thus,

believe that a multi-view approach, such as ours, is crucial to the success of a learning

algorithm in this domain.

Chapter 7

Conclusions

This thesis presents an active learning algorithm that automates BDD variable order dis-

covery for BDD-based program analyses. There are only a small number of variable orders

that deliver ”good” performance and their performance can be orders of magnitude better

than that of other, unoptimized orders. However, searching, labeling, and classifying the

BDD variable order space is expensive.

Our algorithm uses a number of techniques to make the search effective. To maximize

the information gained by each variable order sample, we use uncertainty sampling to find

the variable orders that we are the most uncertain about. We take samples on a rule-by-rule

basis and then assemble global perspectives with multi-view classification techniques. We

then further bias the search towards using features that are known to be effective in order to

prevent the algorithm from investing a significant portion of time investigating undesirable

areas of the search space.

Our experimental results lead us to conclude that machine learning is well-suited for the

BDD variable order problem. The orders we discovered are competitive and, in some cases,

better than the best variable orders obtained either by hand or through multi-day, exhaustive

searches. Moreover, machine learning, unlike other methods, can concisely extract the core

performance features of the problem, giving analysis writers an essential aid for writing

analyses inbddbddb. With the help of this work,bddbddb represents a breakthrough

in the area of program analysis. While Datalog and BDDs have each been independently

used in program analysis, no other tool has married the two in a way that provides a concise,

35

CHAPTER 7. CONCLUSIONS 36

automatically optimizing program analysis framework to aid researchers in the pursuit of

code quality.

Bibliography

[1] Dana Angluin. Queries and concept learning.Mach. Learn., 2(4):319–342, 1988.

[2] Dzintars Avots, Michael Dalton, V. B. Livshits, and Monica S. Lam. Using C pointer

analysis to improve software security. InProceedings of the 27th International Con-

ference on Software Engineering, May 2005.

[3] Eric Bauer and Ron Kohavi. An empirical comparison of voting classification algo-

rithms: Bagging, boosting, and variants.Mach. Learn., 36(1-2):105–139, 1999.

[4] Marc Berndl, Onďrej Lhot́ak, Feng Qian, Laurie Hendren, and Navindra Umanee.

Points-to analysis using BDDs. InProceedings of the SIGPLAN Conference on Pro-

gramming Language Design and Implementation, pages 103–114, June 2003.

[5] B. Bollig, M. Lobbig, and I. Wegener. Simulated annealing to improve variable or-

derings for obdds, 1995.

[6] Beate Bollig and Ingo Wegener. Improving the variable ordering of OBDDs is NP-

complete.IEEE Transactions on Computers, 45(9):993–1002, September 1996.

[7] Leo Breiman. Bagging predictors.Machine Learning, 24(2):123–140, 1996.

[8] Randal E. Bryant. Graph-based algorithms for Boolean function manipulation.IEEE

Transactions on Computers, C-35(8):677–691, August 1986.

[9] Kenneth M. Butler, Don E. Ross, Rohit Kapur, and M. Ray Mercer. Heuristics to

compute variable orderings for efficient manipulation of ordered binary decision di-

agrams. InDAC ’91: Proceedings of the 28th conference on ACM/IEEE design au-

tomation, pages 417–420, New York, NY, USA, 1991. ACM Press.

37

BIBLIOGRAPHY 38

[10] B. Cestnik. Estimating probabilities: A crucial task in machine learning. InProc. of

the 9th ECAI, pages 147–149, Stockholm, Sweden, 1990.

[11] Pi-Yu Chung, Ibrahim N. Hajj, and Janak H. Patel. Efficient variable ordering heuris-

tics for shared ROBDD. InISCAS, pages 1690–1693, 1993.

[12] David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active

learning.Mach. Learn., 15(2):201–221, 1994.

[13] Thomas G. Dietterich. An experimental comparison of three methods for constructing

ensembles of decision trees: Bagging, boosting, and randomization.Mach. Learn.,

40(2):139–157, 2000.

[14] Rolf Drechsler and Nicole G̈ockel amd Bernd Becker. Learning heuristics for OBDD

minimization by evolutionary algorithms. In Hans-Michael Voigt, Werner Ebeling,

Ingo Rechenberg, and Hans-Paul Schwefel, editors,Parallel Problem Solving from

Nature – PPSN IV, pages 730–739, Berlin, 1996. Springer.

[15] B. Efron and J. T. Robert.An Introduction to the Bootstrap. Chapman and Hall, 1993.

[16] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In

International Conference on Machine Learning, pages 148–156, 1996.

[17] M. Fujita, H. Fujisawa, and Y. Matsunaga. Variable ordering algorithms for ordered

binary decision diagrams and their evaluation. InIEEE Transactions on Computer-

Aided Design, volume 12, pages 6–12, January 1993.

[18] John P. Gallagher, Kim S. Henriksen, and Gourinath Banda. Techniques for scaling

up analyses based on pre-interpretations. InProceedings of the 21st International

Conference of Logic Programming, pages 280–296, 2005.

[19] Russell Greiner, Adam J. Grove, and Dan Roth. Learning cost-sensitive active classi-

fiers. Artif. Intell., 139(2):137–174, 2002.

[20] Orna Grumberg, Shlomi Livne, and Shaul Markovitch. Learning to order BDD vari-

ables in verification.Journal of Artificial Intelligence Research, 18:83–116, 2003.

BIBLIOGRAPHY 39

[21] Hans W. Guesgen and Anne Philpott. Heuristics for solving fuzzy constraint satis-

faction problems. InANNES ’95: Proceedings of the 2nd New Zealand Two-Stream

International Conference on Artificial Neural Networks and Expert Systems, page

132, Washington, DC, USA, 1995. IEEE Computer Society.

[22] T. K. Ho. Random decision forests. InProc. of the 3rd Int’l Conference on Document

Analysis and Recognition, pages 278–282, Montreal, Canada, August 1995.

[23] William N.N. Hung and Xiaoyu Song. Bdd variable ordering by scatter search. In

ICCD ’01: Proceedings of the International Conference on Computer Design: VLSI

in Computers & Processors, page 368, Washington, DC, USA, 2001. IEEE Computer

Society.

[24] Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C. Martin, Dzintars

Avots, Michael Carbin, and Christopher Unkel. Context-sensitive program analysis

as database queries. InProceedings of the Twenty-fourth ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems. ACM, June 2005.

[25] David D. Lewis and Jason Catlett. Heterogeneous uncertainty sampling for super-

vised learning. In William W. Cohen and Haym Hirsh, editors,Proceedings of

ICML-94, 11th International Conference on Machine Learning, pages 148–156, New

Brunswick, US, 1994. Morgan Kaufmann Publishers, San Francisco, US.

[26] David D. Lewis and William A. Gale. A sequential algorithm for training text clas-

sifiers. In W. Bruce Croft and Cornelis J. van Rijsbergen, editors,Proceedings of

SIGIR-94, 17th ACM International Conference on Research and Development in In-

formation Retrieval, pages 3–12, Dublin, IE, 1994. Springer Verlag, Heidelberg, DE.

[27] Onďrej Lhot́ak and Laurie Hendren. Jedd: A BDD-based relational extension of Java.

In Proceedings of the SIGPLAN Conference on Programming Language Design and

Implementation, June 2004.

[28] Jorn Lind-Nielsen. BuDDy, a binary decision diagram package.

http://www.itu.dk/research/buddy/, 2004.

BIBLIOGRAPHY 40

[29] Benjamin Livshits, John Whaley, and Monica S. Lam. Reflection analysis for java.

In Proceedings of Programming Languages and Systems: Third Asian Symposium,

November 2005.

[30] Yuan Lu, Jawahar Jain, Edmund M. Clarke, and Masahiro Fujita. Efficient variable

ordering using aBDD based sampling. InDesign Automation Conference, pages 687–

692, 2000.

[31] Richard Maclin and David Opitz. An empirical evaluation of bagging and boosting.

In AAAI/IAAI, pages 546–551, 1997.

[32] D. Margineantu and T. Dietterich. Improved class probability estimates from decision

tree models, 2002.

[33] M. Ray Mercer, Rohit Kapur, and Don E. Ross. Functional approaches to generating

orderings for efficient symbolic representations. InDesign Automation Conference,

1992. Proceedings., 29th ACM/IEEE, pages 624–627, June 1992.

[34] Ion Muslea, Steven Minton, and Craig A. Knoblock. Selective sampling with redun-

dant views. InAAAI/IAAI, pages 621–626, 2000.

[35] Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for Java. In

In Proceedings of the ACM SIGPLAN 2006 Conference on Programming Language

Design and Implementation, June 2006.

[36] National Institute of Standards & Technology. The economic impacts of inadequate

infrastructure for software testing. May 2002.

[37] Shipra Panda and Fabio Somenzi. Who are the variables in your neighborhood.

In ICCAD ’95: Proceedings of the 1995 IEEE/ACM international conference on

Computer-aided design, pages 74–77, Washington, DC, USA, 1995. IEEE Computer

Society.

[38] Csar Ferri Peter. Improving the auc of probabilistic estimation trees, 2003.

BIBLIOGRAPHY 41

[39] Foster Provost and Pedro Domingos. Tree induction for probability-based ranking.

Mach. Learn., 52(3):199–215, 2003.

[40] J. R. Quinlan. Induction of decision trees.Mach. Learn., 1(1):81–106, 1986.

[41] J.R. Quinlan. Bagging, boosting, and c4.5. InProceedings of the 13th National

Conference on Artificial Intelligence, pages 725–730, 1996.

[42] R. Ranjan, A. Aziz, R. Brayton, B. Plessier, and C. Pixley. Efficient bdd algorithms

for fsm synthesis and verification. 1995.

[43] Richard Rudell. Dynamic variable ordering for ordered binary decision diagrams. In

ICCAD ’93, pages 42–47, 1993.

[44] Zsofi Ruttkay. Fuzzy constraint satisfaction. InProceedings 1st IEEE Conference on

Evolutionary Computing, pages 542–547, Orlando, 1994.

[45] Maytal Saar-Tsechansky and Foster Provost. Active learning for class probability

estimation and ranking. InProceedings of the 17th Intl. Joint Conf. on Machine

Learning, pages 911–920, 2001.

[46] Maytal Saar-Tsechansky and Foster Provost. Active sampling for class probability

estimation and ranking.Mach. Learn., 54(2):153–178, 2004.

[47] Gerard Salton and Chris Buckley. Improving retrieval performance by relevance feed-

back. Technical report, Cornell University, 1988.

[48] H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. InProceedings of

the fifth annual workshop on Computational learning theory, pages 287–294. ACM

Press, 1992.

[49] N. J. A. Sloane. The on-line encyclopedia of integer sequences: A000670.

http://www.research.att.com/as/sequences, 2003.

[50] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analyses

using binary decision diagrams. InProceedings of the SIGPLAN Conference on Pro-

gramming Language Design and Implementation, June 2004.

BIBLIOGRAPHY 42

[51] John Whaley. Joeq: A virtual machine and compiler infrastructure. InProceedings

of the SIGPLAN Workshop on Interpreters, Virtual Machines, and Emulators, pages

58–66, June 2003.

[52] John Whaley. JavaBDD library, 2004. http://javabdd.sourceforge.net.

[53] John Whaley, Dzintars Avots, Michael Carbin, and Monica Lam. Using datalog with

binary decision diagrams for program analysis. InProceedings of Programming Lan-

guages and Systems: Third Asian Symposium, November 2005.

[54] Robert P. Wilson et al. SUIF: An infrastructure for research on parallelizing and

optimizing compilers.ACM SIGPLAN Notices, 29(12):31–37, December 1994.

[55] Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from

decision trees and naive Bayesian classifiers. InProc. 18th International Conf. on

Machine Learning, pages 609–616. Morgan Kaufmann, San Francisco, CA, 2001.

[56] Z. H. Zhou, D. Wei, G. Li, and H. Dai. On the size of training set and the benefit

from ensemble. InProceedings of the 8th Pacific-Asia Conference on Knowledge

Discovery and Data Mining (PAKDD’04), pages 298–307. LNAI, 2004.

