Reasoning about Relaxed Programs

Michael Carbin

Massachusetts Institute of Technology

How do we verify the safety
of relaxed programs?

100% =

Quality

0%

Standard Program Model

One point in tradeoff space

Time/Resources/Cost

When do we think like this?

Media Processing, Machine Learning, Search

When do we think like this?

100% + ®

® Highly Accurate,

Accuracy T Expensive

Less accurate,
Inexpensive

0%

Time/Resources/Cost

Relaxed Program Model

A
100% T \y ° °
°
°
Quality T Admits executions at multiple
points in tradeoff space
°
0%

_? >

Time/Resources/Cost

Relaxed programs can dynamically and automatically adapt

Producing Relaxed Programs

Task Skipping/Loop Perforation - rinard ics ‘06, Misailovic ICSE ‘10
Dynamic Knobs - Hoffmann AspLOS ‘11

Approximate Memories - Lui ASPLOS ‘11, Sampson PLDI ‘11
Approximate Memoization - chaudhuri FSE ‘11

Racy Parallelization - wisailovic MIT-TR 10, Rinard RACES ‘12

General Model for Relaxed Programs

A general primitive for relaxed sequential programs [1]:

[Modified Variables]

) /[Relaxaﬁon Predicate]
relax (n) st (n <= old(n));

for (uint 1 =0; 1 < n; ++1i) {...}

T { Loop Perforation!]

[1] Proving Acceptability Properties of Nondeterministic Relaxed
Approximate Programs. Carbin, Kim, Misailovic, Rinard. PLDI ‘12

How do we verify the safety
of relaxed programs?

Program Logic (Hoare Logic)

L s 195

Standard Hoare Logic
doesn’t capture what we want

{x =1} x = x + 1 {x = 2}

Applying Standard Hoare Logic

<ol 4)
{ P(X y) 88& Q(y) } Lose P because x is

? modified
relax (x) st (true); N y
{ Q(y) } =
<ouud ()
{ R(X, y) & S(y)} < Prove both Rand S
assert R(x, y) && S(y); N y

* Note: relaxation doesn’t modify y

 Why do we need to prove S? If S(y) holds in the
original program, then it also holds in the relaxed

Alternative: Relational Program Logic

{Prez} 5 {Qrel}
!

{X<r> == x<0> && y<r> == y<o>}
relax (x) st (true);
{y<r> == y<o>}

Applying Relational Program Logic

<owud (A
{x<r> == x<0> && y<r> == y<o>} _— Xs'tf:]eerigtnt;“t

relax (x) st (trueli////,,,,,///// \)
{ y<r> == y<o> }

<o g)
{R(x<r>, y<r>) && y<r> == y<o> }* Only prove R

assert R(x, y) && S(y) ; X y

Vs and y<r> == y<o> \

\)
I

Relational reasoning is the bridge

If S(y<o>) istrue then S(y<r>) istrue

Relative Safety

If original program satisfies all assertions,
then the relaxed program satisfies all assertions

Established through any means:
verification, testing, code review

In our PLDI paper:

* Full formalization of the relaxed programming model

* Primitives for reasoning about accuracy

 Examples from racy parallelization, approximate memory,
and dynamic knobs

Takeaway

for (uint 1 =0; i < n; ++i) {...}

o

for (uint 1 =0; i < n; i+=2) {...}

Relax Semantics. Preserve Safety. Reuse Proofs

