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Open Challenges in Program Analysis

• Reliability 

• Memory Safety, Memory Leaks, Data Structure Corruption, Error Recovery


• Performance 

• Excess Running Times, Excess Power Consumption


• Security 

• Code Injection Attacks



New Class of Solutions

• Memory Safety (OSDI’04)


• Data Structure Repair (ICSE’05, ISSTA’06)


• Bounded Memory Consumption (ISMM’07)


• Automatic Error Recovery (ASPLOS’09)


• Automatic Patching (SOSP’09)


• Performance Profiling (ICSE’10)


• Reduced Power Consumption (PLDI10, sub OSDI’10)

UNSOUND



Automatic Patching Against Exploits (SOSP ’09)

• Patch restores learned invariants.


• Skip call to a never before seen function.


• Set variable to a previously seen value.
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• Program may transition to previously unreachable program states.

Visualizing Execution

• Solution is to identify regions that won’t get us into trouble.
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The Takeaway

• Critical Input and Code Regions 


• Hard functional correctness requirements - must.


• Forgiving Input and Code Regions 


• Soft functional correctness requirements - may.


• Regions are characterized by application’s response to change. 

• Critical - intolerant to change.


• Forgiving - tolerant to change.


• We can automatically determine regions by modeling application response.



Critical and Forgiving Regions



Critical Input Regions in GIF Image Conversion
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Modeling Application Response



Modeling Response

• Behavioral Distance 

• Change in input region causes change in the behavior of the application.
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Modeling Response (cont.)

• Computation Influence  

• Contribution of input region to computation’s intermediate results.

1 2 3 4 5 6 7 8

influence {3,4}, 

op bytes
1 {2,3,4}
2 {1,2,3,4}
3 {5,6,7,8}
4 {3,4,5,6,7,8}
5 {1,2}

Influence Trace
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Classification Scheme
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• For each region:

distance(         ,        ) is large :

Input Region Classification

ET ETif
return “critical” 

if influence(    ,         ) is large :IT

return “critical” 

determined by 
clustering

parameterized  
threshold

else 
return “forgiving” 



Code Region Classification

• Given input region classifications


• For each basic block, identify accessed input regions and aggregate input 
region classifications.


• Majority are critical => critical code region


• Majority are forgiving => forgiving code region.


• No majority => mixed code region.



Evaluation Methodology

• Input Region Classification


• Compare automatic classifications to golden test oracle.


• Code Region Classification


• Manually determine if code classifications are sensible.



Benchmarks

• Three image processing libraries


• gif (5KLOC), png (36KLOC), jpeg (35KLOC)


• One Task


• Convert a image (gif, png, or jpeg) to a bitmap file.


• Five inputs per benchmark


• Each input exercises different functionality.



Constructing Golden Classifications

• Given input of length n. Run the program to produce the de facto output.


• For each of the n bytes of the given input, generate m fuzzed inputs by 
replacing the value of the byte with a random value. 


• For each of the n*m fuzzed inputs, run the program to produce n*m fuzzed 
outputs.


• Compute the dissimilarity between the de facto output and each of the n*m 
fuzzed outputs.  

• For each byte, if one of the m fuzzed outputs is more than 10% dissimilar, 
classify as critical. Otherwise, classify as forgiving. 



Input Region Classification Results

• Precision: % of critical classification’s that were correct.


• Recall: % of critical classifications that were identified.

benchmark CC* IC** CF* IF** Precision Recall

png 9580 5 451 18 99% 99%

gif 6951 23 2149 1412 99% 83%

jpeg 5123 27 542 1831 99% 73%

*higher is better **lower is better



Role of Behavioral Distance (GIF)

• Behavioral distance does not account for all dissimilarity.

• Clean Separation


distancedissimilarity

• Large behavioral distance implies large dissimilarity

position in file position in file



Role of Computation Influence (GIF)

• Computation influence correlates strongly with dissimilarity.
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PNG Code Classification Results

B-Critical
png_handle_IHDR

png_memcpy_check

png_handle_tRNS

png_do_read_transformations

png_read_start_row

C-Critical
inflate_table

inflate_fast

inflate_table

png_read_row

png_read_finish_row

updatewindow

Forgiving
png_handle_tIME

png_handle_gAMA

png_handle_IEND

png_handle_pHYs

Mixed
png_crc_read

png_crc_error

png_get_int_31

png_read_data



GIF Code Classification Results
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• Few functions because of small size of the benchmark

B-Critical
DGifGetLine

DGifGetImageDesc

C-Critical
DGifDecompressLine

DGifDecompressInput

Mixed
DGifGetWord

DGifDecompressInput



JPEG Code Classification Results
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• Misclassifications in Mixed category due to lower recall.

B-Critical
jpeg_calc_output_dims

jinit_d_main_controller

free_pool

alloc_large

alloc_sarray

start_pass_huff_decoder

process_data_simple_main

jpeg_finish_decompress

C-Critical
decode_mcu

jpeg_huff_decode

jpeg_fill_bit_buffer

jpeg_idct_islow

Forgiving
examine_app0

examine_app14

Mixed
get_interesting_appn

next_marker

read_markers

skip_input_data

skip_variable



Limitations and Future Work

• Benchmarks


• all image conversion


• Behavioral Influence


• Does not capture all behaviors of interest.


• Computation Influence


• Does not track indirect (pointer arithmetic) influence.



Conclusion

• New approaches to program analysis are enabled by the distinction between: 


• Critical Input and Code Regions -  must.


• Forgiving Input and Code Regions - may.


• Input and Code Regions are determined by application’s response to change.


• Critical - intolerant to change.


• Forgiving - tolerant to change.


• We can automatically determine regions by modeling application response.



Thanks



Related Work

• Perturbation Analysis (Voas ’92)


• Critical and Forgiving (Rinard ’05)


• Definition and manual exploration.


• Critical Memory (Pattabiraman ’08)


• Programmers manually allocate memory in a critical heap that provides 
probabilistic memory safety


• Continuity (Chaudhuri ’10)



Implementation

• LLVM-based static bitcode instrumentor and dynamic runtime.


• Currently requires source code. 


• C, C++, Java, Ada, MSIL


• x86 -> LLVM would eliminate need for source.


• Runtime tracks influence (like taint tracing) of input bytes on each operand 
and memory location.


• Shadow Execution (registers, stack, memory, filesystem).


• External library model



• Groups input bytes by affinity:

Input Specification Generator

Op Bytes
1 {1,2}
2 {3,4}
3 {1}
4 {2}
5 {1}
6 {5,6,7,8}
7 {5,6,7,8}
8 {2}
9 {3,4}
10 {3,4}

Influence Trace input

A(1,2) 1/5 = .2 N
A(2,3) 0 N
A(3,4) 3/3 = 1 Y
A(4,5) 0 N

A(5,6)...A(7,8) 2/2 = 1 Y

affinity

1
2
3
4
5
6
7
8

#together/#total



Evaluating Input Region Classifications

• Precision-Recall:


• True Positive: Correct Critical (CC)


• False Positive: Incorrect Critical (IC)


• True Negatives: Correct Forgiving (CF)


• False Negatives: Incorrect Forgiving (IF)


