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Fear :   Anticipation of concurrency errors that manifest at run time.

Our RQ :   How does fearless concurrency translate to parallelism?

Are all parallel patterns fearless in Rust?
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Regular parallelism:
    Known set of tasks
    Known dependences

fn par_increment(v: &mut [u32])
{
  v.par_iter_mut()
   .for_each(|vi|  *vi+=1);
}

stride pattern on v

task
Cannot 
access v

:
No data 
races⇒

✔
✔Rust statically rules out data races for regular parallelism
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Rust solutions for irregular parallelism are not fearless
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Does this matter?
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✔
✔

✘
✘

Patterns

Regular parallelism   ✔

Irregular parallelism ✘
Expressing PBBS in Rust is not fearless
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Conclusions
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Regular
parallelism

Irregular
parallelism

Easy parallelism
is fearless!

Hard parallelism
is still scary…

github.com/mcj-group/rusty-pbbs

github.com/mcj-group/rusty-pbbs
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