
Is the Problem-Based Benchmark
Suite Fearless with Rust?

Javad Abdi, Guowei Zhang, Mark C. Jeffrey

SPAA 2023

Is the Problem-Based Benchmark Suite Fearless with Rust?

Rust is gaining popularity
because of its safety guarantees

3

Is the Problem-Based Benchmark Suite Fearless with Rust?

Rust is gaining popularity
because of its safety guarantees

3

Is the Problem-Based Benchmark Suite Fearless with Rust?

Rust is gaining popularity
because of its safety guarantees

3

[1] Yanovski et al., ICFP 2021, GhostCell: separating permissions from data in Rust.

[1]

Is the Problem-Based Benchmark Suite Fearless with Rust?

Rust is gaining popularity
because of its safety guarantees

3

[1] Yanovski et al., ICFP 2021, GhostCell: separating permissions from data in Rust.

[1]

Rust

Unsafe
Rust

Is the Problem-Based Benchmark Suite Fearless with Rust?

Rust is gaining popularity
because of its safety guarantees

3

[1] Yanovski et al., ICFP 2021, GhostCell: separating permissions from data in Rust.

[1]

Rust

Unsafe
Rust

Rust catches all type and memory safety errors

Is the Problem-Based Benchmark Suite Fearless with Rust?

Rust claims to provide “fearless concurrency”

4

Fear : Anticipation of concurrency errors that manifest at run time.

Our RQ : How does fearless concurrency translate to parallelism?

Is the Problem-Based Benchmark Suite Fearless with Rust?

Rust claims to provide “fearless concurrency”

4

Fear : Anticipation of concurrency errors that manifest at run time.

Our RQ : How does fearless concurrency translate to parallelism?

Are all parallel patterns fearless in Rust?

Is the Problem-Based Benchmark Suite Fearless with Rust?

Contribution: Interrogate fearless concurrency
by expressing (ir)regular parallelism
Rusty-PBBS:
◦ A port of PBBS[Anderson et al.,PPoPP’22] in Rust with both regular and irregular patterns.

Our Case Study:
◦ Classification of parallel expression patterns in Rusty-PBBS.
◦ Evaluating Rust support and fearlessness for each pattern.

5

Is the Problem-Based Benchmark Suite Fearless with Rust?

Contribution: Interrogate fearless concurrency
by expressing (ir)regular parallelism
Rusty-PBBS:
◦ A port of PBBS[Anderson et al.,PPoPP’22] in Rust with both regular and irregular patterns.

Our Case Study:
◦ Classification of parallel expression patterns in Rusty-PBBS.
◦ Evaluating Rust support and fearlessness for each pattern.

5

✔ ✔ ✘ ✘

Is the Problem-Based Benchmark Suite Fearless with Rust?

Fearless regular parallelism with Rust(+Rayon)

6

Regular parallelism:
 Known set of tasks
 Known dependences

Is the Problem-Based Benchmark Suite Fearless with Rust?

Fearless regular parallelism with Rust(+Rayon)

6

Regular parallelism:
 Known set of tasks
 Known dependences

fn par_increment(v: &mut [u32])
{
 v.par_iter_mut()
 .for_each(|vi| *vi+=1);
}

stride pattern on v

Is the Problem-Based Benchmark Suite Fearless with Rust?

Fearless regular parallelism with Rust(+Rayon)

6

Regular parallelism:
 Known set of tasks
 Known dependences

fn par_increment(v: &mut [u32])
{
 v.par_iter_mut()
 .for_each(|vi| *vi+=1);
}

stride pattern on v

task

Is the Problem-Based Benchmark Suite Fearless with Rust?

Fearless regular parallelism with Rust(+Rayon)

6

Regular parallelism:
 Known set of tasks
 Known dependences

fn par_increment(v: &mut [u32])
{
 v.par_iter_mut()
 .for_each(|vi| *vi+=1);
}

stride pattern on v

task
Cannot
access v

:
No data
races⇒

✔

Is the Problem-Based Benchmark Suite Fearless with Rust?

Fearless regular parallelism with Rust(+Rayon)

6

Regular parallelism:
 Known set of tasks
 Known dependences

fn par_increment(v: &mut [u32])
{
 v.par_iter_mut()
 .for_each(|vi| *vi+=1);
}

stride pattern on v

task
Cannot
access v

:
No data
races⇒

✔
✔

Is the Problem-Based Benchmark Suite Fearless with Rust?

Fearless regular parallelism with Rust(+Rayon)

6

Regular parallelism:
 Known set of tasks
 Known dependences

fn par_increment(v: &mut [u32])
{
 v.par_iter_mut()
 .for_each(|vi| *vi+=1);
}

stride pattern on v

task
Cannot
access v

:
No data
races⇒

✔
✔Rust statically rules out data races for regular parallelism

Is the Problem-Based Benchmark Suite Fearless with Rust?

Irregular parallelism remains scary

7

✔
✔

fn indirect_increment(v: &mut [u32], offsets: &[usize])
{
 (0..v.len()).into_par_iter()

.for_each(|i|
v[offsets[i]] += 1

);
}

parallel loop

Is the Problem-Based Benchmark Suite Fearless with Rust?

Irregular parallelism remains scary

7

✔
✔

fn indirect_increment(v: &mut [u32], offsets: &[usize])
{
 (0..v.len()).into_par_iter()

.for_each(|i|
v[offsets[i]] += 1

);
}

parallel loop

Dangerous

Is the Problem-Based Benchmark Suite Fearless with Rust?

Irregular parallelism remains scary

7

✔
✔

fn indirect_increment(v: &mut [u32], offsets: &[usize])
{
 (0..v.len()).into_par_iter()

.for_each(|i|
v[offsets[i]] += 1

);
}

parallel loop

Dangerous
Compile error

Is the Problem-Based Benchmark Suite Fearless with Rust?

Irregular parallelism remains scary

7

✔
✔

fn indirect_increment(v: &mut [u32], offsets: &[usize])
{
 (0..v.len()).into_par_iter()

.for_each(|i|
v[offsets[i]] += 1

);
}

parallel loop

Dangerous

Duplicates: Synchronization

Compile error

of
fs

et
s

Is the Problem-Based Benchmark Suite Fearless with Rust?

Irregular parallelism remains scary

7

✔
✔

fn indirect_increment(v: &mut [u32], offsets: &[usize])
{
 (0..v.len()).into_par_iter()

.for_each(|i|
v[offsets[i]] += 1

);
}

parallel loop

Dangerous

Duplicates: Synchronization

Unique

Compile error

Unsafe with checks
Synchronization

Unsafe without checksof
fs

et
s

Is the Problem-Based Benchmark Suite Fearless with Rust?

Irregular parallelism remains scary

7

✔
✔
✘

fn indirect_increment(v: &mut [u32], offsets: &[usize])
{
 (0..v.len()).into_par_iter()

.for_each(|i|
v[offsets[i]] += 1

);
}

parallel loop

Dangerous

Duplicates: Synchronization

Unique

Compile error

Unsafe with checks
Synchronization

Unsafe without checksof
fs

et
s

Is the Problem-Based Benchmark Suite Fearless with Rust?

Irregular parallelism remains scary

7

✔
✔

✘
✘

fn indirect_increment(v: &mut [u32], offsets: &[usize])
{
 (0..v.len()).into_par_iter()

.for_each(|i|
v[offsets[i]] += 1

);
}

parallel loop

Dangerous

Duplicates: Synchronization

Unique

Compile error

Unsafe with checks
Synchronization

Unsafe without checksof
fs

et
s

Is the Problem-Based Benchmark Suite Fearless with Rust?

Irregular parallelism remains scary

7

✔
✔

✘
✘

fn indirect_increment(v: &mut [u32], offsets: &[usize])
{
 (0..v.len()).into_par_iter()

.for_each(|i|
v[offsets[i]] += 1

);
}

parallel loop

Dangerous

Duplicates: Synchronization

Unique

Compile error

Unsafe with checks
Synchronization

Unsafe without checksof
fs

et
s

Rust solutions for irregular parallelism are not fearless

Is the Problem-Based Benchmark Suite Fearless with Rust?

Does this matter?
Irregular parallelism is common in PBBS!

8

✔
✔

✘
✘

Patterns

Regular parallelism ✔

Irregular parallelism ✘

Is the Problem-Based Benchmark Suite Fearless with Rust?

Does this matter?
Irregular parallelism is common in PBBS!

8

✔
✔

✘
✘

Patterns

Regular parallelism ✔

Irregular parallelism ✘

Is the Problem-Based Benchmark Suite Fearless with Rust?

Does this matter?
Irregular parallelism is common in PBBS!

8

✔
✔

✘
✘

Patterns

Regular parallelism ✔

Irregular parallelism ✘
Expressing PBBS in Rust is not fearless

Is the Problem-Based Benchmark Suite Fearless with Rust?

Conclusions

9

Regular
parallelism

Irregular
parallelism

Easy parallelism
is fearless!

Hard parallelism
is still scary…

github.com/mcj-group/rusty-pbbs

github.com/mcj-group/rusty-pbbs

	Slide 1: Is the Problem-Based Benchmark Suite Fearless with Rust?
	Slide 2: Is the Problem-Based Benchmark Suite Fearless with Rust? Are Parallel Algorithms Ready for Prime Time (with Rust)?
	Slide 3: Rust is gaining popularity because of its safety guarantees
	Slide 4: Rust is gaining popularity because of its safety guarantees
	Slide 5: Rust is gaining popularity because of its safety guarantees
	Slide 6: Rust is gaining popularity because of its safety guarantees
	Slide 7: Rust is gaining popularity because of its safety guarantees
	Slide 8: Rust is gaining popularity because of its safety guarantees
	Slide 9: Rust is gaining popularity because of its safety guarantees
	Slide 10: Rust claims to provide “fearless concurrency”
	Slide 11: Rust claims to provide “fearless concurrency”
	Slide 12: Rust claims to provide “fearless concurrency”
	Slide 13: Rust claims to provide “fearless concurrency”
	Slide 14: Contribution: Interrogate fearless concurrency by expressing (ir)regular parallelism
	Slide 15: Contribution: Interrogate fearless concurrency by expressing (ir)regular parallelism
	Slide 16: Contribution: Interrogate fearless concurrency by expressing (ir)regular parallelism
	Slide 17: Fearless regular parallelism with Rust(+Rayon)
	Slide 18: Fearless regular parallelism with Rust(+Rayon)
	Slide 19: Fearless regular parallelism with Rust(+Rayon)
	Slide 20: Fearless regular parallelism with Rust(+Rayon)
	Slide 21: Fearless regular parallelism with Rust(+Rayon)
	Slide 22: Fearless regular parallelism with Rust(+Rayon)
	Slide 23: Fearless regular parallelism with Rust(+Rayon)
	Slide 24: Fearless regular parallelism with Rust(+Rayon)
	Slide 25: Fearless regular parallelism with Rust(+Rayon)
	Slide 26: Fearless regular parallelism with Rust(+Rayon)
	Slide 27: Irregular parallelism remains scary
	Slide 28: Irregular parallelism remains scary
	Slide 29: Irregular parallelism remains scary
	Slide 30: Irregular parallelism remains scary
	Slide 31: Irregular parallelism remains scary
	Slide 32: Irregular parallelism remains scary
	Slide 33: Irregular parallelism remains scary
	Slide 34: Irregular parallelism remains scary
	Slide 35: Irregular parallelism remains scary
	Slide 36: Irregular parallelism remains scary
	Slide 37: Irregular parallelism remains scary
	Slide 38: Irregular parallelism remains scary
	Slide 39: Irregular parallelism remains scary
	Slide 40: Irregular parallelism remains scary
	Slide 41: Does this matter? Irregular parallelism is common in PBBS!
	Slide 42: Does this matter? Irregular parallelism is common in PBBS!
	Slide 43: Does this matter? Irregular parallelism is common in PBBS!
	Slide 44: Does this matter? Irregular parallelism is common in PBBS!
	Slide 45: Conclusions

