

MIT vi	irtues of Spoken Language	
Natural: Flexible: Efficient: Economical:	Requires no special training Leaves hands and eyes free Has high data rate Can be transmitted/received inexpensive	ly
Speech interfa management • The inform • The users • Only teleph	aces are ideal for information access and when: nation space is broad and complex, are technically naive, or hones are available.	
Advanced Natural Language Processin	rg (6.864) Automatic Sp	video veech Recognition 4

Diverse Spoken	Sources of Knowledge for Language Communication
Acoustic-Phonetic:	Let us pray Lettuce spray
Syntactic:	Meet her at the end of Main Street Meter at the end of Main Street
Semantic:	Is the baby crying Is the bay bee crying
Discourse Context:	It is easy to recognize speech It is easy to wreck a nice beach
Others:	I'm <i>flying</i> to Chicago tomorrow I'm flying to <i>Chicago</i> tomorrow
Advanced Natural Language Processing (6.864)	Automatic Speech Recognition 5

Parameters that Characterize the Capabilities of ASR Systems

Parameters	Range
Speaking Mode:	Isolated word to continuous speech
Speaking Style:	Read speech to spontaneous speech
Enrollment:	Speaker-dependent to speaker-independent
Vocabulary:	Small (<20 words) to large (>50,000 words)
Language Model:	Finite-state to context-sensitive
Perplexity:	Low (<10) to high (>200)
SNR:	High (>30dB) to low (<10dB)
Transducer:	Noise-canceling microphone to cell phone

Automatic Speech Recognition 8

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

ASR Trends*: Then and Now							
	before mid 70's	mid 70's - mid 80's	after mid 80's				
Recognition Units:	whole-word and sub-word units	sub-word units	sub-word units				
Modeling Approaches:	heuristic and ad hoc	template matching	mathematical and formal				
	rule-based and declarative	deterministic and data-driven	probabilistic and data-driven				
Knowledge Representation:	heterogeneous and complex	homogeneous and simple	homogeneous and simple				
Knowledge Acquisition:	intense knowledge engineering	embedded in simple structure	automatic learning				

* There are, of course, many exceptions.

Advanced Natural Language Processing (6.864)

Automatic Speech Recognition 16

But We Are Far from Done!					
Corpus	Speech Type	Lexicon Size	Word Error Rate (%)	Human Error Rate (%) *	
Digit Strings (phone)	spontaneous	10	0.3	0.009	
Resource Management	read	1000	3.6	0.1	
ATIS	spontaneous	2000	2		
Wall Street Journal	read	~20K	6.6	1	
Broadcast News	mixed	~64K	9.4		
Switchboard (phone)	conversation	~25K	13.1	4	
Meetings	conversation	~25K	30		
Advanced Natural Language Processing (6.864) * Lippmann, 1997 Automatic Speech Recognition 1					

What Makes Speech Recognition Hard?

- Phonological variations
 - Local and global contexts, ...
- Individual differences
 - Anatomy, socio-linguistic factors, ...
- Environmental factors
 - Transducers, noise, ...
- Diversity of language use – Syntax, semantics, discourse, ...
- Real-world issues – Disfluencies, new words, ...
- . . .

Advanced Natural Language Processing (6.864)

Automatic Speech Recognition 18

Finite-State Transducers Most speech recognition constraints and results can be represented as finite-state automata: - Language models (e.g., n-grams and word networks) - Lexicons - Phonological rules - N-best lists - Word graphs - Recognition paths · Common representation and algorithms desirable - Consistency - Powerful algorithms can be employed throughout system - Flexibility to combine or factor in unforeseen ways • Finite-state transducers (FSTs) are effective for defining weighted relationships between regular languages - Extend FSAs by enabling transduction between input and output strings - Pioneered by researchers at AT&T for use in speech recognition Advanced Natural Language Processing (6.864) Automatic Speech Recognition 40

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>