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Abstract

Good-Turing adjustments of word frequencies are
an important tool in natural language modeling. In
particular, for any sample of words, there is a set
of words not occuring in that sample. The total
probability mass of the words not in the sample is
the so-called missing mass. Good showed that the
fraction of the sample consisting of words that oc-
cur only once in the sample is a nearly unbiased es-
timate of the missing mass. Here, we give a PAC-
style high-probability confidence interval for the
actual missing mass. More generally, for ,
we give a confidence interval for the true probabil-
ity mass of the set of words occuring times in the
sample.

1 INTRODUCTION
Since the publication of the Good-Turing estimators in
1953 [4], these estimators have been used extensively in lan-
guage modeling applications [2, 3, 6]. In spite of the exten-
sive use of Good-Turing estimators, little theoretical work
has been done on these estimators since the original the-
orems showing that they have negligible bias. In this pa-
per, we briefly review the Good-Turing estimators and then
prove new convergence rates, i.e., we give PAC-style high-
probability confidence intervals for the true values of the es-
timated quantities.

Perhaps the most significant Good-Turing estimator is
the estimate of the missing mass. We assume that there is
some unknown underlying distributionon some unknown set
of objects, e.g., an unknown frequency for each word in En-
glish. We assume that a sample is constructed by drawing ob-
jects independently according to this unknown distribution.
If the number of objects with nonzero probability is infinite
then for any finite sample there will be objects of nonzero
probability that do not occur in the sample. It is well known
that in any sample of English text there will be Englishwords
not occurring in the sample. The missing mass of a sample
is the total probability mass of the objects not occurring in
the sample. The Good-Turing estimate of the missing mass
is the fraction of the sample consisting of objects that occur
exactly once in the sample. The fundamental Good-Turing
result is that this estimate has negligible bias. However, to

our knowledge, the convergence rate of this estimator has
never been formally analyzed.

According toGood [5], the Good-Turing estimators were
developed by Alan Turing during World War II while break-
ing Enigma codes. The Enigma was an encryption device
used by the German navy. The Enigma used, as part of its
encryption key, a three letter sequence. These three letter
sequences were selected from a book containing all such se-
quences in a random order. However, a person opening the
book and selecting an entry was likely to select a previously
used entry, say the entry on the top of a page where the bind-
ing of the book was creased. Given a sample of previously
used entries, Turing wanted to estimate the likelihood that
the current unknown entry was one that had been previously
used, and further, to estimate the probability distributionover
the previously used entries. This lead to the development
of the estimators of the missing mass and estimates of the
true probability mass of the set of items occuring times in
the sample. Good worked with Turing during the war and,
with Turing’s permission, published the analysis of the bias
of these estimators in 1953. As mentioned above, these es-
timators have now become standard in a variety of natural
language processing applications.

In this paper, we analyze the convergence rate of the
Good-Turing estimators. Let be the fraction of the sam-
ple consisting of words that occur only once in the sample
and let be the actual missing mass, i.e., the total prob-
ability mass of the items not occurring in the sample. We
prove that with probability at least over the choice of
the sample, we have that is no larger than

where is the size of the sample. This is true independent of
the underlying distribution. We also give a somewhat weaker
PAC lower bound on and PAC bounds on the true total
probabilitymass of the set of words occurring times in the
sample.

2 THE GOOD-TURING ESTIMATORS
We assume an unknownprobabilitydistribution on a count-
able vocabulary and we denote the probability of word
by . In practice, this is often taken to be the words of
some natural language, such as English, although of course



are results are applicable when the vocabulary is any count-
able universe of objects. We consider a sample of words
drawn independently from according to distribution .
Throughout the paper, we will write to mean that
with probability at least over the choice of the sample
we have that holds.

For a sample of words and for any word we
define to be the number of times word occurs in the
sample . For any integer , we define to be the set
of words such that . Note that is the
set of words in not occuring in . We define to be
probability of drawing a word in the set :

Note that depends on the sample, i.e., it is a random
variable.

The Good-Turing estimators estimate the quantities .
These quantities are conceptually useful in constructing lan-
guage models. The quantity is the so-called missing
mass, i.e., the total probability mass of words not occuring
in the sample. Intuitively, a language model should reserve
some probability mass for words not in the sample since it is
unlikely (or even impossible if the vocabulary is larger than
the sample) that all the words in a large vocabulary will be
seen in the sample. Similarly, for the quantitiy is
useful in estimating the true probability of a word that occurs
times in the sample. Specifically, for , if we know
, then a good estimate of would be . For

small, we usually have that is significantly smaller than
its “natural” estimate . For example, if all words in
a large sample occur only once, then is the entire sample
but is almost certainly near zero.

The Good-Turing estimate of , which we denote ,
can be defined as follows:

Good [4] showed that for small and large this estimate
has small bias, that is, the expectation of is very close to
the expectation of . We prove a variant of Good’s theo-
rem here:

Theorem 1 For we have

Proof: Note that can be written as follows:

The Good-turing estimate is often defined to be .
For much smaller than this is essentially the same as the def-
inition used here. However, the estimate has slighly
smaller bias and is theoretically easier to work with.

Theorem 1 immediately implies that for much smaller than
we have that is a nearly unbiased estimate of .

More specifically, since we have the follow-
ing corollary of Theorem 1.

Corollary 2 For we have .

Note in particular that .

It is interesting to note that it is possible to “unwind” the
equation in Theorem 1. For example, we can use as
an improved estimate of . By observing that
we get that the bias of this improved estimate is at most

. More generally, the bias of an estimator
based on using the equation in Theorem 1 times will be

. However, it seems that the variance of these esti-
mators is large compared to , so reducing the bias below

is not a significant improvement.

3 CONVERGENCE OF THE
GOOD-TURING ESTIMATORS

The first main result of this paper bounds the rate at which
the Good-Turing estimators converge. More specifically, we
have the following:

Theorem 3

Note that for fixed and , we have that the bound on
converges to zero as increases at the rate

independent of the size or distribution of the underlying vo-
cabulary. Furthermore, the width of the confidence interval
has only logarithmic dependence on the confidence parame-
ter . For small compared to , the bound is ap-
proximately



For large compared to , but still small compared
to , the bound is approximately

The bound is vacuous for .
The basic idea behind the proof is to introduce a thresh-

old such that, with high confidence, all words with
occur more than times and hence do not influence

. Given an upper bound on for words influencing
we have that a single (plausible) change in the sample can
change by at most . Given a bound on the influence
of a single sample element on (and also ), we can
apply McDiarmid’s theorem which gives a convergence rate
for any function of the sample where single changes in the
sample have limited influence.

To establish an appropriate value for we use the fol-
lowing lemma:

Lemma 4 If a biased coin has probability of being heads,
and is the fraction of times the coin comes up heads in a
sample of independent tosses, then we can bound in
terms of as follows.

Proof: The relative Chernoff bound [1] states the following
for :

Setting this probability equal to and solving for we can
rephrase this bound as follows:

(1)

We use “high confidence implication” which states that if
and implies , then . In partic-

ular, consider any sample satisfying the body of Eq. (1). The
body of Eq. (1) implies that

that is,

which implies that is at most

We now define to be the bound in Lemma 4:

We also define as follows:

Note that consists of that fragment of due to “low
frequency” words. The frequency threshold
is selected so that is essentially the same as ; with
high confidence, and their expectations differ by
at most .

Lemma 5 For we have that

Proof: First we use “union boundquantification”which states
that if is a finite set such that

then

This is simply a formulation of the union bound. Applying
union bound quantification to Lemma 4 with being the
set of words such that , we get that

(2)
By high confidence implication, it now suffices to show that
the body of (2) implies . Assume the body of
(2). To show we must show that for any word
with we have . Let

be any such word. One can check that for we have
. Hence and so by the

body of (2) we have . But this
implies which
implies .

Lemma 6

Proof: First note the following:

It now suffices to show that for we
have . Lemma 4 can be rephrased as



For this implies

, and therefore

So we have .

Now that we have established that behaves much like
, we use the fact that a single change in the sample can

not have much influence on the value of . The follow-
ing theorem of McDiarmid [7] states that any function of the
sample for which a single change in the sample has limited
effect must converge to its expectation as the sample gets
large.

Theorem 7 (McDiarmid) Let , , be independent
random variables taking values in a set and let
be such that

is at most where the supremum is taken over all
. Then with probability at least

and with probability at least

A natural special case is and
. In this case, and McDiarmid’s theo-

rem reduces to the Heoffding inequalities.
The “union bound conjunction principle” states that, for

any positive numbers and , if

and

then

This can be rephrased equivalently to say that if

and

then

which clearly follows from the union bound.
Applying union bound conjunction to the two conclu-

sions in McDiarmid’s theorem gives that, with probability
at least ,

(3)
Using Eq. (3) we can prove the following:

Lemma 8

Proof: We apply Eq. (3) with being the vocabulary of pos-
sible words and being the th word in the sample. We take

to be . Note that when a word is re-
placed in the sample, one word increases its count while an-
other word decreases its count. This implies that a single re-
placement can change by at most . So a single replace-
ment can change by at most . A single
replacement can change by at most .
So a single change in the sample can change by at
most

Eq. (3) then implies the lemma.

Proof of Theorem 3:We apply union bound conjunction
to lemmas 5 and 8 with inserted for in Lemma 8. When
then get that the following holds with probability at least
:

This inequality is trivially true when and Theorem 3
follows.



4 A TIGHTER UPPER BOUND ON THE
MISSINGMASS

In the case of the missing mass , it is possible to give
a significantly tighter upper bound than that given in Theo-
rem 3, namely, the following:

Theorem 9

Note that this bound only applies to one of the tails. It re-
mains open whether a similar bound holds on the other tail
as well.

To prove this theorem, we divide into a high fre-
quency component and a low frequency component
as follows:

We prove the following two lemmas seperately:

Lemma 10

Lemma 11

Lemma 11 follows from an application of McDiarmid’s
theorem and the observation that a single change in the sam-
ple can change by at most . Lemma 10 is more
involved and is proved at the end of this section. Note that

and hence, by union bound conjunction,
Lemmas 10 and 11 together imply that

(4)

We also need the following two lemmas where the first fol-
lows from Theorem 1 and the second follows from an appli-
cation of McDiarmid’s theorem to :

Lemma 12 .

Lemma 13 .

Theorem 9 now follows by applying union bound con-
junction to Eq. (4) and Lemma 13 so that the bodies of Eq. (4),
Lemma 12 and Lemma 13 all hold simultaneously.

It now remains only to prove Lemma 10. The proof is
based on Chernoff’s method. The first step is to prove the
following:

Lemma 14 For and we have

where

and is the probability that word does
not occur in the sample.

Proof: In Chernoff’s method, we bound the tail probability
using Markov’s inequality:

(5)

Let . For each word ,
we introduce a random variable which is 1 if does not
occur in the sample and 0 otherwise. We can then write
as

Clearly, so

(6)

Now

(7)

where the last equality uses the fact that . Multi-
plying out the product, we can write Eq. (7) as a polynomial:

(8)

for some coefficients . Furthermore, because ,
all of the coefficients are nonnegative.

Note that is if none of the words in
occur in the sample and is otherwise. Thus,

(9)



The inequality here can be proved by induction on using
the fact that for . Thus,
combining Eqs. (7), (8) and (9) gives

Combined with Eqs. (5) and (6) this gives

Next we prove the following bound on the function :

Lemma 15 For

Proof: First, note that . Now let denote the
first derivative of , i.e., evaluated at . Then

Note that . Now letting denote the second
derivative of we get that

where the last two inequalities use the inequality
which is at most for . For

and one can show, by maximizing over , that

For , we can use this inequality with
and get that

Since we then have that

The lemma now follows from , and
.

Proof of Lemma 10: Let . Lemmas 14 and 15
together imply that

Lemma 10 now follows by setting this probability equal to
and solving for . This completes the proof of Theorem 9.
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