Case-Factor Diagrams
for Structured Probabilistic Modeling

David McAllester
TTI at Chicago
mecallester@tti-c.org

Abstract

We introduce a probabilistic formalism sub-
suming Markov random fields of bounded
tree width and probabilistic context free
grammars. Our models are based on a rep-
resentation of Boolean formulas that we call
case-factor diagrams (CFDs). CFDs are sim-
ilar to binary decision diagrams (BDDs) but
are concise for circuits of bounded tree width
(unlike BDDs) and can concisely represent
the set of parse trees over a given string un-
der a given context free grammar (also unlike
BDDs). A probabilistic model consists of a
CFD defining a feasible set of Boolean as-
signments and a weight (or cost) for each in-
dividual Boolean variable. We give an inside-
outside algorithm for simultaneously com-
puting the marginal of each Boolean variable,
and a Viterbi algorithm for finding the min-
inum cost variable assignment. Both algo-
rithms run in time proportional to the size of
the CFD.

1 Introduction

In this paper, we investigate efficient representations
for structured probabilistic models. Informally, a
structured model defines a distribution on structured
objects such as sequences, parse trees, or assignments
of values to variables. The number of possible struc-
tured objects typically grows exponentially in a natu-
ral measure of problem size. For example, the num-
ber of possible parse trees grows exponentially in the
length of the string being parsed. Structured statis-
tical models include Markov random fields (MRFs),
probabilistic context free grammars (PCFGs), hidden
Markov models (HMMSs), conditional random fields
(CRFs) [12], dynamic Bayes nets [11], probabilistic

Michael Collins

CSAIL CIS

Massachusetts Institute of Technology
mcollins@ai.mit.edu

Fernando Pereira

University of Pennsylvania
pereira@cis.upenn.edu

Horn abduction [15], and probabilistic relational mod-
els (PRMs) [10].

For each of these model types one can define a corre-
sponding structured classification problem. In HMMs,
for example, the problem is to recover the hidden state
sequence from the observable sequence. For PCFGs,
the problem is to recover a parse tree from a given
word string. In PRMs, the problem is to recover la-
tent entity labels and relations for a given set of ob-
served entities and relations. We follow an approach
where the statistical model defines P(y|z) and struc-
tured classification finds the most likely y for a given
z. (Other approaches are possible — for example, max-
imum margin classifiers are discussed below.)

The structured statistical models discussed above are
intuitively similar. They all involve local probability
tables or local cost functions. It is widely believed
that many, if not all, of the above modeling formalisms
can be viewed as special cases of MRFs (undirected
graphical models). More specifically, in a structured
classification problem one should be able to represent
P(y|x) as an MRF. By assuming P(y|z) is modeled
as an MRF one can prove theorems and design algo-
rithms and software at an abstract level which simul-
taneously applies to all of the modeling formalisms dis-
cussed above.

Unfortunately, for some of the above models the rep-
resentation of P(y|z) as an MRF is problematic. The
most problematic case is perhaps PCFGs. It is fairly
easy to construct an MRF representing P(y|z) where
y is a parse tree and x is a word string. Unfortunately,
standard MRF algorithms take exponential time when
applied to the natural MRF representation. This is
a somewhat surprising outcome, given that there are
well-known inference algorithms for PCFGs which run
in cubic time in the length of the word string x.

This paper presents a modeling formalism which han-
dles both MRFs of bounded tree width and PCFGs.

First we define a linear Boolean model (LBM). An
LBM consists of three parts: a set of boolean vari-
ables; a formula defining a set of possible assignments
to these variables (a “feasible set”); and an assignment
of a weight to each variable. The weight for a com-
plete variable assignment is then the sum of weights
for those variables in the assignment that are true.
The weight associated with a truth assignment can be
written as a linear function of the bits in the assign-
ment — hence the term “linear”. We show how to
encode both standard MRF's and PCFGs, as LBMs.

The main problem we solve is how to encode com-
pactly the set of possible assignments to the vari-
ables in an LBM in a single formalism handling both
MRFs of bounded tree width and PCFGs. The case-
factor diagrams (CFDs) we introduce for that purpose
are similar to binary-decision diagrams (BDDs) [4].
CFDs differ from BDDs in two ways. First, CFDs
are similar to zero-suppressed BDDs (ZBDDs) [14].
ZBDDs are designed for sparse truth assignments —
truth assignments where most of the Boolean variables
are false. Sparseness is important for representing
PCFGs. In addition to being zero-surpressed, CFDs
have “factor nodes” which allow a concise representa-
tion of problems that factor into independent subprob-
lems. Factoring is important for representing MRF's of
bounded tree width. We describe algorithms for CFDs
that compute partition functions under Gibbs distri-
butions for P(y|z), that select the maximum likeli-
hood (Viterbi) structure, and an inside-outside algo-
rithm for computing the marginal distributions of all
of the Boolean variables. These algorithms all run in
time linear in the number of nodes in the CFD. We
demonstrate that PCFG models can be encoded in a
CFD which has O(n?®) size where n is the length of
the input string. We also show that MRF's of bounded
tree width can be represented by a CFD with a poly-
nommial number of nodes.

There are various lines of related work. A variant of
BDDs for circuits of bounded tree width was intro-
duced by McMillan [13]. Although McMillan’s for-
malism is more elaborate, it turns out that simply
extending BDDs with “and” nodes suffices for repre-
senting MRFs of bounded width. But representing
PCFGs seems to require a zero-suppressed formalism.
CFDs are related to the recursive conditioning algo-
rithm introduced by Darwiche [6, 1]. The nodes of a
CFD correspond to the “subproblems” that arise in
recursive conditioning. Recursive conditioning cases
on the value of a variable, factors the remaining prob-
lem into independent subproblems, and then solves the
subproblems recursively. CFDs provide a data struc-
ture that explicitly represents this case-factor struc-
ture. The CFD allows different algorithms to exploit

that same structure. CFDs and recursive conditioning
can both exploit context-sensitive independence (CSI)
[3]. CSIis particularly important for PCFGs where the
tree width of the natural MRF representation is large
and tractability is due to CSI. Darwiche [7] provides a
representation of case-factor structure based on arith-
metic expressions, but it is not clear how to represent
the feasible set of parse trees in that form.. Dechter [8]
presents a representation of case-factor structure based
on and/or graphs, and also discusses representations
in terms of BDDs, but she does not consider the ques-
tion of sparse assignments which is critical for PCFGs.
However, it is possible to represent the distribution of
parse trees with an appropriate and/or graph. In do-
ing this one must use the convention that the feasible
set is in one-to-one correspondence with the “solution
trees” of the graph. CFDs explicitly represent the fea-
sible set as a set of truth assignments. In the case
of PCFGs, the truth assignment representation of the
feasible set is natural because each Boolean variable
can be given a natural meaning as a statement about
the parse tree represented by the assignment.

Developing a common language for structured mod-
eling has potential applications to maximum-margin
structured classification [16, 5, 2]. A maximum mar-
gin model is trained using an objective function stated
in terms of margins rather than in terms of P(y|z).
However, the model parameters can still be viewed as
defining an log-linear or maxent probabilistic repre-
sentation. CFDs provide a formalism for structured
modeling that allows these algorithms and others to
be formulated at a level of generality that covers both
MRFs of bounded tree width and weighted grammar
formalisms like PCFGs.

2 Linear Boolean Models

We first fix some notation and terminology. Given a
set of variables V and domains dom(z) for each z € V,
an assignment p maps ¢ € V to p(z) € dom(zx); a
partial assignment ¢ maps a subset of the variables
dom(o) C V to appropriate values. The number
of variables given values by (partial) assignment p is
lp| = |dom(p)|. We write p’ C p if dom(p’) C dom(p)
and p'(z) = p(z) Vo € dom(p’). If p is a (pos-
sibly partial) assignment on V and V' C V| p|y
is the unique assignment such that p|ly» T p and
dom(ply/) = dom(p) N V’. 1If all the variables are
Boolean, that is dom(z) = B = {0,1} Vz € V,
the assignment is a truth assignment. If p is a (pos-
sibly partial) assignment, z € V a variable, and
v € dom(z), plx := v] is the assignment identical to
p except that plx := v](z) = v. If F is a set of as-
signments, Flz := v] = {p[z :=v] : p € F}. If p

and o are truth assignments, p V ¢ is the assignment
such that (p vV o)(z) = 1 if and only if p(z) = 1 or
o(x) = 1. If F} and Fy are sets of truth assignments,
FiVFE,={pVo:p€F and o € F»}. The support of
a truth assignment is the set of variables set to 1 by
the assignment.

We can now describe a general class of structured
probabilistic models with Boolean variables. A lin-
ear Boolean model (LBM) is a triple (V| F, ¥) where
V is a set of Boolean variables, F' is a set of feasible
configurations, each of which is a truth assignment to
V', and ¥ is an energy function ¥ : V — R. We extend
¥ to configurations p € F with the following “linear”
definition:

V(p) =Y W(2)p(2) (1)

zeV

If we view ¥ as a vector in RVl and p as a vector
in BIYI then W(p) is simply the inner product of ¥
and p. A LBM M defines a probability distribution
P(- | F,) on feasible configurations p € F as follows.

POIF.T) = ﬁaw (2)
Z(FU) = Y e 0 (3)

pEF

Given equation (2) we have that an LBM is really just
a log-linear or maxent model [9] on a set F' under the
restrictions that all features are Boolean and that each
element of F' is uniquely determined by its feature val-
ues. A critical issue is how to represent the feasible
set F'. Before discussing the representation of F', how-
ever, we give two examples of representing structured
models with LBMs.

3 Markov Random Fields

A Markov random field (MRF) consists of variables
and energy terms on configurations of those variables.
More precisely, we assume a finite set of variables yj,
... y¢ with associated domains), ..., V. We take the
domains Y; to be finite sets with |);| > 2. We define
a configuration to be an assignment p of values to the
variables. An MRF is a set of such variables plus a
set of energy terms ¥y, ..., Uy each of which maps a
configuration to a real number. Any such set of energy
terms defines a hypergraph on the variables. More
specifically, we say that ¥ depends on variable y; if
there exists configurations p and p’ which agree on all
variables except y; and such that Wy (p) # Vi(p’). Let
Vi denote the set of variables on which ¥, depends.
The sets Vj define a hypergraph on the variables. If
[Vi:| = 2 for all k then these sets define a graph.

An MRF M defines a probability distribution over con-
figurations P(p|M) by the following equations:

1

P(p|M) = m‘f*wp)
Z(M) = > et
U(p) = Y lp)

k

To represent an MRF as a LBM we must represent a
configuration of M as a truth assignment on Boolean
variables and represent the energy terms by an en-
ergy function on Boolean variables. Given an MRF M
we construct Boolean variables of the form "y, = v"
with y; a variable of M and with v €);. For each
energy term Uy with Vi, = {y1,...,ym} and each tu-
ple of values vy, ...,vx with v; €); we also introduce
the Boolean variable "k,y1 = v1 A -+ A Ym = vp".
Of course not all truth assignments to these Boolean
variables correspond to configurations of the random
field M. In order for a Boolean assignment to be
feasible we must have that for each y exactly one
of "y = v1", ..., "y = v," is true and furthermore
"Eyyp = v1 A s A Y = U is true if and only if
each of "y; = v1", ..., "ym = vp" is true. Section 5
discusses a method for representing this feasible set
of truth assignments. Finally we define the variable
energy function as follows.

U('y=0v")=0

\Ij("k,yl =01 A ANYm = vm") = \I]k('Ul;"'a'Um)

4 Parse Distributions as LBMs

A CFG in Chomsky normal form is a set of produc-
tions of the following form where X, Y and Z are
nonterminal symbols and a is a terminal symbol.

X — YZ
X — a

A parse tree is a tree each node of which is labeled by
a production of the grammar in the standard way. In
a weighted CFG each production X — + is assigned
an energy (weight) U(X — «). For any parse tree y
we write yield(y) for the yield of y, i.e., the sequence
of terminal symbols at the leaves of the parse tree. We
write U(y) for the total energy of the parse tree y —
U(y) is the sum over all nodes of y of the energy of
the production used at that node. For a given string x
of terminal symbols we have a probability distribution

on parse trees y with yield(y) = « defined as follows.

Pylz) = %e*%) (4)
Z(x) = 2%) YW (5)
y: yield(y)=z

To construct an LBM representation of P(y|z) we first
define a set of Boolean variables. Let n be the length
of x. First we have a phrase variable "X, ;" for each
nonterminal X in the grammar and 1 <i < j <n+1.
This phrase variable represents the statement that the
parse contains a phrase with nonterminal X spanning
the string from 4 to j — 1 inclusive. Second we have a
branch variable "X; ; — Y; ;Z; ;" for each production
X — YZ in the grammar and 1 <i < j <k <n+ 1.
A branch variable represents the statement that the
parse contains a node labeled with the given produc-
tion where the left child of the node spans the string
from i to j — 1 and the right child spans j to k — 1.
Finally, we have a terminal variable "X; ;11 — a" for
each terminal production X — a and position ¢ in the
input string. A terminal variable represents the state-
ment that the parse tree produces terminal symbol a
from nonterminal X at position i. We take V to be
the set of all such phrase, branch, and terminal vari-
ables. Each parse tree determines a truth assignment
to the variables in V' and we take F' to be the set of
assignments corresponding to parse trees. Finally, we
must define the energy of each Boolean variable. The
variable energy function ¥ is given by the following
equations.

\II(I'Xi,j n) — O
V(" Xip — YijZix") = U(X —>YZ)
\II("Xi,i+1 — a") = \IJ(X — Cl)

5 Case Factor Diagrams (CFDs)

A case-factor diagram represents the feasible set by a
search tree over the set of possible truth assignments.
The search tree cases on the value of individual vari-
ables and factors the feasible set into a product of in-
dependent feasible sets when possible. We represent
this case-factor search tree by an expression.

Definition 1 A case-factor diagram (CFD) D is an
expression generated by the following grammar where x
is a Boolean variable; a case expression case(xz, D1, Da)
must satisfy the constraint that x does not appear in
D1 or Ds; and a factor expression factor(Dy, Do) must
satisfy the constraint that no variable occurs in both Dy
and Ds.

D ::= case(x, D1, Ds) | factor(D1, D2) | unit | empty

We denote by V(D) the set of variables occurring in
D.

To define the meaning of CFDs, it is convenient to see
all CFD variables as members of a common countably
infinite set of variables V. The interpretation F'(D) of
a CFD D is then a finite set of finite support assign-
ments to V. We use 0 for the totally false assignment
(the zero vector). F'(D) is defined as follows.

= F(Dy)[z :=1]UF(Dy)
= F(Dy)V F(Ds)

— —

F(factor(Dy, Do

Therefore, like in ZBDDs, variables that are false in
all assignments in F(D) are not mentioned in D. In
contrast, a BDD must test all variables in its domain,
precluding the compact representation of sparse as-
signments.

An an example consider variables x1, x2, ... and con-

sider the CFD A; defined as follows.

Ag = unit
Aipr = case(iy1, Ai, Aj)
Under the semantics stated above we have that F'(A;)
is the set of all the 27 truth assignments p satisfying
the constraint that p(x;) = 0 for all j > i. As another
example, consider B; defined as follows.

By = unit
B;y1 = factor(case(x;11, unit, unit), B;)

We leave it to the reader to verify that F'(B;) = F'(4;).
As a third example consider C; defined as follows.

Co = unit
Ciy1 = case(w;y1,C; empty)
We have that F'(C;) contains only the single truth as-
signment p such that p(z;) = 1 for j <iand p(z;) =0
for 7 > 4. In general this semantics has the property
that if does not occur in D then p(z) = 0 for any
assignment p € F(D). Because the two arguments
of a factor expression cannot share variables, we have
that the number of assignments in F'(factor(D;, D))
equals the number of assignments in F'(D;) times the
number of assignments in F(Ds). We leave it to the
reader to verify that any feasible set on any finite set
of variables can be represented by a CFD.

The meaning of CFD expressions is independent of
their representation as data structures. However, the
running time of algorithms depends crucially on that

representation. For all the algorithms we discuss, we
assume that CFD expressions are represented as dia-
grams, which are DAGs with one node for each dis-
tinct subexpression, and edges from the node for an
expression to the nodes for its immediate subexpres-
sions. That is, common subexpressions are represented
uniquely. For example, the CFD A; defined above
viewed as a tree has 2! leaves. Viewed as a diagram,
however, A; has only i + 1 nodes but 2¢ different paths
from the root node to the leaf node. The size of a
CFD D, denoted |D|, is defined to be the number of
distinct subexpressions of D (including D itself). In
other words, |D| is the number of nodes in the dia-
gram view of D. We will often use the word “node”
as a synonym for “expression”. We will also use the
standard DAG notions of parent, child, and (directed)
path for CFDs. We write D’ < D to state that node
D’ is a (possibly improper) descendant of node D. If
D’ < D, the depth of D' (in D) is the length of the
longest path from D to D'.

6 CFDs for MRFs

Here we define a CFD representation of the feasible
set for the LBM constructed in section 3. Consider
the problem of computing Z(M) for an MRF M. We
assume that the variables of M have been given in a
fixed order y1,ys2,...,yn. The assignments to these
variables form a tree whose root has a branch for each
value of y;, the next level branches for each value of
yo and so on. As variables are assigned, however, the
residual hypergraph defined by the energy terms often
factors into disjoint sets of terms on disjoint sets of
variables. So one can compute Z(M) by factoring the
residual problem when possible and, if no factoring is
possible, casing out on the value of the next variable
(after which more factoring may be possible). This
“case-factor process” determines a set of subproblems.
The nodes (subexpressions) in the CFD representation
of the MRF correspond to the subproblems that arise
in this way. Each such subproblem is defined by a
subset ¥ of the energy terms and a partial assignment
p to (some of) the variables occurring in X.

More formally, consider a subset ¥ of the energy terms
of M. Let V(X) be the set of variables on which
some energy term in ¥ depends, i.e., V(X) = Ugex Vi.
Let p be a partial assignment of values to (some of)
the variables in V(X). Note that p is defined on the
general variables of M rather than the Boolean vari-
ables of M’. For each pair of such a subset ¥ and
partial assignment p we now define a CFD D(X, p).
The CFD for the full feasible constraint is D(32(M),)
where X(M) is the set of all energy terms in M and
() is the empty partial assignment. For a given par-

tial assignment p we define a graph structure on the
energy terms in ¥ by saying that there is an edge be-
tween two energy terms if there is a variable not as-
signed a value by p on which both terms depend. The
key to concise representation is to factor the prob-
lem when ¥ becomes disconnected. We use the no-
tation case({z1, D1), (22, D2),...,{Zm, Dm)) as an ab-
breviation for case(z1, Dy, case({z2, D2), ..., (2n, Dn)))
where case((z, D)) is case(z, D,empty). The CFD
D(X, p) is defined as follows.

1. If ¥ is disconnected under partial assignment p,
let 3 = 31 UX5 where 31 and X5 are disjoint and
not connected to each other. Then:

D(X, p) = factor(D(21, plv(s,)), D(22, plv(z,)))

2. Otherwise, if X consists of a single constraint Wy
and p assigns values to all of V(X), we have the
following where Vi, = {y1,...,ym} and v; = p(y;).

D(%,p) =

case("k,y1 = V1,...,Ym = Um", unit,empty)

3. Otherwise, let y be the earliest variable (under
the given variable order) in V(X) that is not in
dom(p). In this case we have the following where
dom(y) = {v1, ..., vp}.

D(Z7 p) =

("y=wu", DX, ply = w1])),

("y = 0", D(S, ply := va]))

We now show that MRFs of small tree width have con-
cise CFD representations. First we define the notion
of tree width.

Definition 2 We consider a fixed variable order iy,
o Yn. Fori with 1 <i < n we define the present vari-
able to be y;, the past variables to be all variables y;
with j < i, and the future variables to be all variables
y; with j > i. Note that the present variable is both
past and future. We define G; to be the graph whose
nodes are the energy terms of M and where two energy
terms are connected by an edge if they both depend on
the same future variable. The connected components
of G; give independent subproblems on the future vari-
ables. If ¥ is a connected component of G; then we
define the width of ¥ (at time i) to be the number of
past variables occurring in . The tree width of M un-
der the given variable ordering is the maximum over
all i of the mazimum width (at time i) of a connected
component of G;.

We now have the following theorem.

Theorem 1 Let w be the tree width of M under the
given wvariable ordering. Then |D(M)| is O(Nd™)
where N is the number of energy terms in M and
d= maxi|y,»|.

Proof: We first show that the total number of nodes
of the CFD can be no more than twice the number
of pairs (X, p) where ¥ is a connected component of
G; for some i and p is a partial assignment to past
variables of . All nodes in the CFD are either of
this form, are on of the constants unit, or empty, or
are factor nodes generated by step 1 of the procedure.
Suppose the top level problem can be factored into
some number of independent subproblems. The fac-
toring is represented by a binary tree whose leaves are
the final factors, so the number of nodes in the tree is
proportional to the number of factors. A similar ob-
servation applies to any factoring that occurs following
a case analysis introduced by step 3. So, without loss
of generality, we need only consider pairs (X, p) where
¥ is a connected component of G;. The set of all such
subsets forms a tree whose leaves consist of single en-
ergy terms. Hence there are at most 2/V such subsets.
For a fixed subset X, the set of possible assignments
to past variables form a tree with at most d* leaves.
So there are at most 2d" values of p for a given value
of X. [

7 CFDs for Parsing

Here we construct a CFD for the feasible set of the
LBM defined in Section 4 for a grammar G. We de-
fine the CFD D("X; ;") such that the assignments in
F(D("X; ")) are in one-to-one correspondence with
the parse trees of the span from i to k—1 with root non-
terminal X. The CFD representing the full feasible set
of parses is D("S1 p+1"). First we define D("X, ") as
follows where B("X; ") represents the consequences
of making "X; ;" true.

D("X; ;") = case("X; 1", B("X; "), empty)
For k > i+ 1 we define the consequences B("X; ") as

follows using the multi-branch case notation defined in
section 6.

B("X; ") = case({(b1, B(b1)),...,{bn, B(by)))
where the variables b, are all possible branch vari-

ables of the form "X, , — Y; ;Z; ", and B("X, , —
Yi;jZjk") = factor(D("Y;;"), D("Z;x")).

Finally, if a; is the ith input symbol, we have

B("Xi,i+1") —
case("X; i+1 — a;",unit,empty) if X —a; € G
empty otherwise

This construction has the property that [D("S1,,+1")]
is O(|G|n?) where |G| is the number of productions in
the grammar.

8 Inference on CFD Models

A CFD model (D,¥) is an LBM whose feasible set
is defined by a CFD D and whose energy function ¥
assigns costs to the variables of D. We will now present
the main inference algorithms on CFDs.

The Inside Algorithm. We first consider the prob-
lem of computing Z(F(D),¥) as defined by equa-
tion (3). Here we write Z(D,¥) as an abbreviated
form of Z(F(D),). It turns out that Z(D, ¥) can be
computed by recursive descent on subexpressions of D
using the following equations.

Z(case(x, D1, Dy), ¥
Z(factor(Dy, Ds), ¥
Z(unit, ¥

Z(empty, ¥

e V@ Z(Dy, W) + Z(Do, ¥)
Z(D1,9)Z(Ds, V)

~— — ~— ~—

1
0
The correctness of these equations can be proved by
induction on the size of D. By caching these compu-
tations for each subexpression of D, these equations
give a way of computing Z (D, ¥) in time proportional
to |D|. These equations are analogous to the inside
algorithm used in statistical parsing.

The Viterbi Algorithm. Next we consider the
problem of computing minimum energy over the el-
ements of F(D). In particular we define U*(D, V) as
follows.

U*(D,¥) = min ¥
(D, %) min ()

We can compute ¥*(D, ¥) using the following equa-
tions.

U*(case(z, D1, D2), ¥) = min (U(z) +9*(D1,9),)

U™ (Do, ¥)
U*(factor(Dy, D2),¥) = ¥* (D, V) + ¥* (Do, U)
T* (unit, ¥) = 0
U*(empty, ¥) = 400

Again the correctness of these equations can be proved
by a direct induction on the size of D. These equations

can easily be modified to also compute a truth assign-
ment that achieves the minimum energy. This is a
truth assignment of highest probability.

Marginals. Next we consider the problem of com-
puting marginal probabilities of the form P(z =
1| D,¥,0) where o is a partial truth assignment that
fixes the values of some of the CFD model variables.
We will show that these marginals can be computed
in time proportional to |D||o].

The marginal P(z = 1 | D,¥,0) can be written as

follows:

Z(D,V, o[z :=1])
Z(D,V,0)

Z e~ Y(p)

pEF(D): 0cCp

P(z|D,V,0) =

Z(D, ¥, o) =

So it suffices to be able to compute Z(D,¥,0).
We now define the auxiliary quantity Z'(D,V¥,0) =
Z(D,¥,0|y(py). Our procedure computes Z (D, ¥, o)
by computing Z'(D’, ¥, o) for all subnodes D’ of D.
Note that the number of such values is |D|. The Z’
values satisfy the following equations for factor, unit
and empty expressions.

Z’(factor(Dl,Dg),\I/,a) = Z/(Dl, \I/,O')Z,(DQ, \1170')
Z'(unit, ¥,0) =1
Z'(empty, ¥,0) =0

Computing Z’ on case expressions is more subtle. Let
D be the expression case(z, D1, D3). We now have the
following equation where Z(v, D, D', ¥, ¢) is defined
below.

e YA Z(2,D,D,¥,0) ifo(z)=1
7DV, o) = Z(z,D,D9,¥,0) ifo(2)=0
T e ¥ Z(2,D,Dy, ¥, 0)
+Z(2,D,D5,¥,0) otherwise

Z(z,D, D' ¥, o) expresses the constraint that omitted
variables default to 0 in CFDs. If o(z’) = 1 where
z' occurs in D but not in D', Z(z,D,D’,¥,0) = 0,
otherwise Z(z,D,D', ¥, o) = Z'(D', VU, 0).

To analyze the running time of computing Z(D, ¥, o)
we first note that there are a linear number of val-
ues needed of the form Z(z, D', D" ¥, o). Assum-
ing unit time hash table operations, it is possible to
cache the answer to all queries of the form z € D’ for
z' € dom(X) and D’ a node in D, in O(|D||o]) time.
Given this cache, each call to Z(z, D, D', ¥, o) can be
computed in time proportional to |o|. So the overall
computation takes time proportional to |D||o|.

The Inside-Outside Algorithm. Using the above
conditional probability algorithm to compute P(z =
1 | D, %) for all variables z can take Q(|D|?) time.
However, a generalization of the inside-outside algo-
rithm can be used to simultaneously compute P(z =
1| D,) for all variables z in D in O(|D]) time. The
value Z(D, ¥) is the “inside” value associated with D.
Intuitively, the outside value of a node in a CFD is
the total weight of the “contexts” in which that node
appears. Formalizing the appropriate notion of con-
text for general CFDs is somewhat subtle and is done
in the appendix. Although the definition of context is
subtle, the equations for computing outside values are
rather natural.

A node is open if it does contain variables and closed
otherwise. Outside values are only defined for open
nodes. For D' < D, and D’ open, we now define the
outside value O(D’, D, V) of D’ (in D). For D' = D,
O(D,D,¥) =1. For D' # D and D’ open, we have:

O(D',D,¥) = Y O(case(z,D'D"), D, ¥)e ")
case(z,D’,D"")<D
+ Z O(case(z,D",D"), D, V)
case(z,D"",D')<D
+ > Offactor(D',D"), D, ¥)Z(D", ¥)
factor(D’,D"")<D
+ > Offactor(D", D), D, ¥)Z(D", ¥)
factor(D"",D")<D
Once the inside value of every node has been com-
puted, these equations allows the outside values of
open nodes to be computed from the top down. This
top-down calculation can be done in time proportional

to the number of nodes. Finally we can compute
P(z=1|D, ") as follows.

Theorem 2

Z(D, W, 0z := 1))
Z(D, V)

P(z=1|D, V) =

Z(D,v,0lz:=1]) =
O(case(z,D'D"), D,)
e—\I/(z)

case(z,D’,D"")<D Z(D/, \I/)

The proof, which requires a careful definition of the
meaning of the outside numbers, is given in the ap-
pendix.

9 Conclusions

We have described a class of structured probabilistic
models based on case-factor diagrams. We have also

shown that for a given a weighted context free gram-
mar G and input string x the conditional probabil-
ity P(y|z) can be represented by a CFD model with
O(]G|n3) nodes. We have also shown that any MRF
with tree width w in which variables have V' possible
values and with IV energy terms can be represented by
a CFD model with O(NV*") nodes. We have shown
that for an arbitrary CFD model, computing the parti-
tion function, most likely variable assignment, and the
probability of each Boolean variable, can all be done
in time linear in the number of nodes. We believe
that CFD models will provide a common language for
specifying algorithms and stating theorems that can
play for structured probabilistic models a similar role
to that of BDDs in Boolean inference problems.

Acknowledgments Michael Collins and Fernando
Pereira were supported in this work by the National Sci-
ence Foundation under grants 0347631 and EIA-0205456,
respectively.

References

[1] D. Allen and A. Darwiche. New advances in inference
by recursive conditioning. In UAI03, 2003.

[2] Y. Altun and T. Hofmann. Large margin methods
for label sequence learning. In 8th Furopean Confer-
ence on Speech Communication and Technology (Eu-
roSpeech), 2003.

[3] C. Boutilier, N. Friedman, M. Goldszmidt, and
D. Koller. Context-specific independence in bayesian
networks. In UAI96, 1996.

[4] R. E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Com-
puters, C-35(8):677-691, 1986.

[5] M. Collins. Parameter estimation for statistical pars-
ing models: Theory and practice of distribution-free
methods. In H. Bunt, J. Carroll, and G. Satta, editors,
New Developments in Parsing Technology. Kluwer,
2004.

[6] A. Darwiche. Recursive conditioning. Artificial Intel-
ligence, 125(1-2):5-41, 2001.

[7] A. Darwiche. A differential approach to inference in
Bayesian networks. Journal of the ACM, pages 280—
305, May 2003.

[8] R. Dechter. And/or search spaces for graphical mod-
els. ICS Technical Report, March 2004.

[9] S.Della Pietra, V. Della Pietra, and J. Lafferty. Induc-
ing features of random fields. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19(4):380—
393, 1997.

[10] L. Getoor, N. Friedman, D. Koller, and A. Pfeffer.
Learning probabilistic relational models. In S. Dze-
roski and N. Lavrac, editors, Relational Data Mining.
Springer-Verlag, 2001.

[11] K. Kanazawa, D. Koller, and S. Russell. Stochastic
simulation algorithms for dynamic probabilistic net-
works. In UAI95, 1995.

[12] J. Lafferty, A. McCallum, and F. Pereira. Conditional
random fields: Probabilistic models for segmenting
and labeling sequence data. In Proceedings of ICML-
01, 2001.

[13] K. L. McMillan. Hierarchical representation of dis-
crete functions, with application to model checking. In
Computer Aided Verification, 6th International Con-
ference, 1994.

[14] S. Minato. Zero-suppressed BDDs for set ma-
nipulation in combinatorial problems. In Proc.
of 30th ACM/IEEE Design Automation Conference
(DAC’93), pages 272-277. ACM Press, 1993.

[15] D. Poole. Probabilistic Horn abduction and Bayesian
networks. Artificial Intelligence, 64(1), 1993.

[16] B. Taskar, C. Guestrin, and D. Koller. Max-margin
markov networks. In Neural Information Processing
Systems Conference (NIPS03), 2003.

Appendix: Proof of Theorem 2

The proof uses a series of lemmas on the meaning of
outside values. For a PCFG, the outside value of a
phrase is the total weight of all extensions of the phrase
to a full parse tree. We will see that the corresponding
notion for a CFD model (D, ¥) is the outside value
O(D',D,¥) of anode D' < D, with the contexts being
certain assignments that “lead to” D’. More precisely,
the set (D, p) of nodes that an assignment p to the
variables of D leads to is given by:

v(D,p) ={D}U~'(D,p)
(D1,p) ifp(z) =1
(Da2,p) if p(z) =0
v'(factor(D1, Do), p) = v(D1, p) U(D2, p)
v (unit, p) = {unit}
7' (empty, p) = {empty}

v (case(z, D1, D3), p) = {3

For D’ < D we define the set of assignments that lead
to D’ as follows:

F(D',D)={pe F(D): D' e~(D,p)}

Each assignment p € F(D’, D) can be split into an
outside part and an inside part p = p1 D'V pl D/,
where pTD" = plaom(p)—v () and plD’ = p|y(pry. The
set of contexts for D’ is then

O(D', D) = {pID': pe F(D', D))

We now prove the expected relationship between out-
side values and contexts:

Lemma 3 For D' < D with D’ open

oD, D,w)= > ¥ (7)
c€0(D’,D)

The proof requires several auxiliary lemmas giving
properties of v(D, p) and F(D’, D).

Lemma 4 If D' is open and D' € ~(D,p) then
(D, p) contains exactly one path from D to D’.

Proof: The proof is by induction on |D|. The lemma
is vacuously true if D is closed. Now suppose D is
of the form case(z,U, W) and assume the lemma for
U and W. If p(z) = 1 then v(D,p) is {D} U~ (U, p)
and the lemma follows from the induction hypothe-
sis on paths into U. A similar observation holds for
paths into W when p(z) = 0. Finally, suppose D is
factor(U, W). Since U and W do not share variables,
any open node in U or W must be in only one of these
nodes. The lemma again follows from the induction
hypothesis on paths into U and paths into W. [

Lemma 5 If p € F(D) then empty € v(D, p).

Proof: The proof is by induction on |D|. If D = empty
then F(D) = () and the lemma is vacuously true. If
D = unit, v(D, p) = {unit}, satisfying the lemma. Now
suppose D = case(z, D', D”) and assume the lemma
for D' and D”. If p(z) = 1 then ~(D,p) = {D} U
~v(D’, p). But by construction v(D’, p) depends only on
the values of p on V(()D'), so y(D’, p) = v(D’, plD’).
By definition of F(D), p| D' € F(D’). So by the
induction hypothesis empty & (D', p| D) and hence
empty € (D, p). Similar arguments prove the cases
p(z) =0 and D = factor(D’, D"). n

Lemma 6 If p € F(D', D) then p|D' € F(D’).

Proof: If p € F(D', D) and D’ is closed, by definition
of F(D',D) and of v(D, p), all subnodes of D’ are in
(D, p). By Lemma 5, none of those subnodes can be
empty. Therefore, D’ involves only factor and unit, so
F(D'") = {0} and p|D’ = 0 so the lemma follows. For
open nodes D’ the proof is by induction on the depth
of D' in D. If D' = D, F(D',D) = F(D) and the re-
sult is immediate. Now assume the lemma for all open
nodes of depth k in D and consider an open node D’
in D of depth k + 1. Consider p € F(D’, D). The set
~v(D, p) includes D" and, by Lemma 4, a unique path
from D to D’. Let D" be the parent of D’ in this path.
By the induction hypothesis, o = p| D" € F(D").
In addition, by construction D’ € v(D”, o) and hence
o € F(D’,D"). To complete the proof, we just need to
show that o|D’ € F(D’). First suppose the parent D"
is of the form case(z, D', V') where o(z) = 1. Then the
result follows from the definition of F(case(z, D', V)).
Similar arguments apply when D’ is of one of the
forms case(z, V, D’), factor(D’, V) or factor(V,D’). m

Lemma 7 If o and o' agree on all variables not oc-
curring in D' then D' € (D, o) if and only if D' €
v(D,d’).

Proof: If D’ is closed then ¢’ = ¢ and the result is im-
mediate. For open nodes the proof is by induction on
the depth of D’. If D’ = D then the result is immedi-
ate. Now assume the result for all open nodes of depth
k and consider an open node D’ of depth k+1. Let o
and o’ be two assignments that agree on all variables
not in D’. Suppose D' € «(D,o). Let D" the par-
ent of D' in the unique path from D to D’ contained
in v(D, o). By the induction hypothesis, D" is also
included in (D, ¢’). Now suppose D" is of the form
case(z, D', V) and o(z) = 1. Since z does not occur in
D’ we have 0/(z) = 1 and hence D’ € (D, 0’). A sim-
ilar argument holds if D’ is of the form case(z, V, D),
factor(D’, V') or factor(V, D’). The converse where we
assume D’ € y(D,¢’) is similar. n

Lemma 8 If o € O(D',D) and p € F(D') then o V
pe F(D', D).

Proof: If D’ is closed then p = 0 and o € F(D) and
the result is immediate. For open nodes the proof is by
induction on the depth of D’. For D' = D, O(D’, D) =
{0} and F(D’, D) = F(D), so the result is immediate.
Now assume the result for all open nodes of depth
k in D and consider an open node D’ depth k + 1.
Consider 0 € O(D’, D) and p € F(D’). By definition
of O(D', D), there is ¢’ € F(D’, D) such that o/1D’ =
o. We must show that ¢'1D'V p € F(D',D). Since
D’ € v(D,o’), Lemma 7 implies D’ € v(D,d’'TD’ V p).
It remains only to show that o’/1D’'Vp € F(D). Let D"
be the unique parent of D’ in v(D, ¢’). Suppose D" is
of the form case(z, D', V') with p(z) = 1. We now apply
the induction hypothesis to the pair of assignments
o'1D" and p|z := 1] to conclude that ¢'TD" V p[z :=
1] € F(D). But 6¢'"1D"Vp|z := 1] = 0'1D’'V p, therefore
and hence ¢/ T1D"V p € F(D). A similar argument
holds if D" = Case(z,V,D’) with p(z) = 0. Now
suppose D" = factor(D’,V). By Lemma 6, o/ [V €
F(V). By the definition of F(factor(D’,V)),pV o]
V € F(factor(D',V)). We now apply the induction
hypothesis to ¢/ 71D’ and pV ¢’ |V to conclude ¢’
D'vpVvd'lV € F(D). But ¢'1D'VpVo'|V = c'1D'Vp,
thus o'TD’' V p € F(D). The case D" = factor(V, D’)

is similar.]

Now for o € O(D’, D) we define v(D’, D, o) to be the
unique path from D to D’ contained in v(D, oV p) for
arbitrary p € F(D').

Lemma 9 If 0 € O(D',D), v(D',D, o) is well de-
fined.

Proof: By Lemma 8, oV p € F(D',D) for any p €
F(D'), and by Lemma 4 the path p from D to D" in
v(D, oV p) is unique. Now let p’ € F(D'), and let D"
be any node on the path from D to D" in y(D, o V p).
By Lemma 7, D" € v(D,o V p'). Hence v(D,o V p')
must contain p.]

Lemma 10 For D' < D, F(D',D) ={ocVp:0 €
O(D',D) and p € F(D')}.

Proof: For p € F(D', D), p = pID'Vp|D'. By the def-
inition of O(D’, D), ptD’ € O(D’, D), and Lemma 6,
plD’ € F(D'), so p has the desired form. The converse
follows from Lemma 8. [

Proof of Lemma 3: The proof is by induction
on depth of D' in D. If D' = D, by definition
O(D',D,¥) = 1 and O(D,D) = {0}, so the result
follows. Now assume that the lemma holds for nodes
of depth k or less and let D’ be a node of depth
k + 1. By the induction hypothesis, each occurrence
of O(-, D, ¥) in the right-hand side of (6) satisfies the
lemma. By Lemma 9, O(D’, D) can be split into four
disjoint subsets corresponding to the four terms on
the right-hand side of (6). We must show that each
of these terms computes an appropriate sum over an
appropriate subset of O(D’, D). Consider the third
term of the sum. This term corresponds to the set of
assignments ¢ = O(D’, D) such that the parent of D’
in the path v(D’, D, o) is of the form factor(D’, D").
Now consider a fixed parent P of this form, and let
O ={oce€O0D,D):Pec~D,6D,o)}. We must
show that

> e =0(P,D,v)Z(D", V) (8)
ce0
By the induction hypothesis, O(P,D,¥) =

S ocowm €). By definition, Z(D”,¥) =
ZpeF(D,,)e_‘I'(p). Therefore, the equality (8) holds
ifO={o"Vp:0 € OP,D) and p € F(D")}. If
o € O, it is easy to see that there are ¢’ € O(P, D)
and p € F(D”, D) such that o = ¢’ V p. By Lemma 6,
p € F(D"). Conversely, consider ¢ € O(P,D)
and p € F(D”). Consider any p’ € F(D’). The
assignment p V p’ is in F(P). By Lemma 8 we then
have that oV pV p’ € F(D’, D). But this implies that
oV p e O(D, D). This proves (8) and hence that the
third term in the definition of O(D’, D, ¥) has the
appropriate semantics. The proof of the appropriate
semantics for the other terms is similar. (]

Lemma 11 If p € F(D) and p(z) = 1 then v(D,p)
contains a node of the form case(z, D1, D3).

Proof:The proof is by induction on |D|. If D = empty,

F(D) = 0 and the lemma is vacuously true. If
D = unit, then p = 0 and there is no z with p(z) = 1.
If D = factor(D’,D") then either (p|D’)(z) = 1 or
(plD")(z) = 1 and the lemma follows form the in-
duction hypothesis on D’ or D”. Finally, suppose
D = case(w, D', D"). If w = z then D is of the de-
sired form. Now assume w # z. If p(w) = 1 then
we have plw := 0] € F(D'), (plw := 0])(z) = 1, and
v(D', plw := 0]) C (D, p). In this case the lemma
follows from the induction hypothesis. A similar argu-
ment holds for p(w) = 0. m

Lemma 12 For a given variable z, the set v(D,p)
contains at most one node of the form case(z, D', D").

Proof:The proof is by induction on |D|. The lemma
is immediate if D is closed. Now suppose D =
case(w, D', D"). If w = z then D = case(z, D', D")
and there can be no other node of this form because
D’ and D" cannot contain z. Now suppose w # z. If
p(w) =1 then (D, p) is {D}U~(D’, p) and the lemma
follows from the induction hypothesis on D’. A sim-
ilar arguments holds if p(w) = 0. Finally, suppose D
is factor(D’, D). In this case the lemma follows from
the induction hypothesis on D’ and D” and the fact
that z can occur in at most one of D’ and D”. n

Proof of theorem 2: Let F(z,D) = {p € F(D) :
p(z) = 1}. For any p € F(z,D), by lemmas 11 and 12,
there is a unique node C(z, D, p) € v(D, p) of the form
case(z, D1, D2). Let
O(Z, D, Dl, DQ) =
{0 € F(2,D) : C(2 D, p) = case(z, Dy, Dy)}

Then

Z(D,¥, 0z :=1])

— Z e~ Y(p)

pEF(z,D)

Z Z e~ (o)

case(z,D1,D2)=<D pcO(z,D,D1,D3)

The theorem thus follows if

Z .

p€O(2,D,D1,D>)
O(case(z, Dy, Dy), W)e~ Y Z(D;, ¥)

This is true if O(z,D, Dy, Ds) is the set of assign-
ments of the form o V @[z := 1] V p with o €
O(case(z, D1, D3), D) and p in F(D;), which follows
by an argument similar to that used for Lemma 3. =

