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ABSTRACT
This paper investigates error-corrective language modeling using
the perceptron algorithm on word lattices. The resulting model
is encoded as a weighted finite-state automaton, and is used by
intersecting the model with word lattices, making it simple and
inexpensive to apply during decoding. We present results for vari-
ous training scenarios for the Switchboard task, including using n-
gram features of different orders, and performing n-best extraction
versus using full word lattices. We demonstrate the importance
of making the training conditions as close as possible to testing
conditions. The best approach yields a 1.3 percent improvement
in first pass accuracy, which translates to 0.5 percent improvement
after other rescoring passes.

1. INTRODUCTION
Various approaches have been proposed to directly optimize mod-
els to minimize error rate [2, 6, 7, 8, 10, 11, 12], ranging from
discriminative parameter adjustment algorithms [2, 12] to post-
processing on recognizer output [8, 10] and confusion network
construction [7, 8]. One of the earliest papers on the topic [2]
motivated its approach by reference to the perceptron algorithm,
and, proposed a technique for corrective training of discrete out-
put HMM parameters for acoustic modeling. In this paper, we
investigate the use of the perceptron algorithm for language mod-
eling, under various training scenarios, using word-lattice output
and trigram, bigram and unigram features. We show error-rate re-
ductions of between 0.5 and 1.3 percent on the Switchboard 2002
evaluation set.

The basic idea behind the algorithm is to move the parameter
values – in our case n-gram feature costs – in such a way that fea-
tures associated with the lowest error-rate hypotheses in the train-
ing lattices have their costs reduced and features associated with
the lowest cost hypotheses have their costs increased.

Our approach has several nice properties. First, the algorithm
converges to its best performance within one or two passes over
the training data, leading to relatively short training times. Second,
because it extracts features from only two strings per utterance for
each iteration, rather than from all paths in the word lattice, it is
relatively parsimonious in the size of the final feature set. Finally,
because it involves a simple linear combination of n-gram feature
weights, it can be easily encoded as a weighted finite-state automa-
ton, and simply intersected with word lattices to apply the model.

The paper is organized as follows. First we will present the
perceptron training algorithm introduced in [3], in the context of
language modeling. Next we will discuss encoding the perceptron
model in a deterministic weighted finite state automaton, which
allows for rapid intersection with the lattices and counting of fea-
tures for model update. Finally, we will present empirical trials
with different methods for generating training lattices and with dif-
ferent feature sets.

2. THE GENERAL FRAMEWORK
In this section we describe a general framework of linear mod-
els that could be applied to a diverse range of tasks, e.g. POS-
tagging or ASR hypothesis re-ranking. We then describe a partic-
ular method for parameter estimation, which is a generalization of
the perceptron algorithm.

2.1. Linear models for language modeling

We follow the framework outlined in [3, 4]. The task is to learn
a mapping from inputsx ∈ X to outputsy ∈ Y. For example,
X might be a set of utterances, withY being a set of possible
transcriptions. We assume:

• Training examples(xi, yi) for i = 1 . . . N .

• A function GEN which enumerates a set of candidates
GEN(x) for an inputx.

• A representation Φ mapping each(x, y) ∈ X × Y to a
feature vectorΦ(x, y) ∈ Rd.

• A parameter vector ᾱ ∈ Rd.

The componentsGEN,Φ and ᾱ define a mapping from an
inputx to an outputF (x) through

F (x) = argmax
y∈GEN(x)

Φ(x, y) · ᾱ (1)

whereΦ(x, y) · ᾱ is the inner product
∑
s αsΦs(x, y). The learn-

ing task is to set the parameter valuesᾱ using the training examples
as evidence. Thedecoding algorithmis a method for searching for
they that maximizes Eq. 1.

This framework is general enough to encompass several tasks
in natural language modeling, such as part-of-speech tagging and
named entity extraction, as detailed in [3]. In this paper we are
interested in ASR, where(xi, yi), GEN, andΦ can be defined as
follows:

• Each training example(xi, yi) is a pair wherexi is an ut-
terance, andyi is the gold-standard transcription for that
utterance, either the reference transcription or the hypothe-
sis transcription with the minimum error rate.

• Given an input utterancex, GEN(x) is a set of hy-
pothesized transcriptions for that sentence. In our case,
GEN(x) will be defined as the paths in a word-lattice out-
put from a baseline recognizer.

• The representationΦ(x, y) tracks arbitrary features of can-
didate transcriptions. For example,Φi(x, y) could be de-
fined as the unigram count in the candidate transcription
(x, y) of wordwi.



Inputs: Training examples(xi, yi)
Initialization: Setᾱ = 0
Algorithm:

For t = 1 . . . T , i = 1 . . . N
Calculatezi = argmaxz∈GEN(xi)

Φ(xi, z) · ᾱ
If(zi 6= yi) thenᾱ = ᾱ+ Φ(xi, yi)− Φ(xi, zi)

Output: Parameters̄α

Fig. 1. A variant of the perceptron algorithm.

2.2. The Perceptron Algorithm for Parameter Estimation
We now consider the problem of setting the parameters,ᾱ, given
training examples(xi, yi). We will briefly review the perceptron
algorithm, and its convergence properties – see [3] for a full de-
scription. The algorithm and theorems are based on the approach
to classification problems described in [5].

Figure 1 shows the algorithm. Note that the most complex step
of the method is findingzi = argmaxz∈GEN(xi)

Φ(xi, z) · ᾱ,
which is the decoding problem. We will show in the next section
that, in the current case, this can be done with efficient intersection
and bestpath extraction algorithms available in the FSM library [9].

We will now give a first theorem regarding the convergence of
this algorithm. First, we need the following definition:

Definition 1 LetGEN(xi) = GEN(xi)−{yi}. In other words
GEN(xi) is the set ofincorrectcandidates for an examplexi.
We will say that a training sequence(xi, yi) for i = 1 . . . n is
separable with margin δ > 0 if there exists some vectorU with
||U|| = 1 such that

∀i,∀z ∈ GEN(xi), U · Φ(xi, yi)−U · Φ(xi, z) ≥ δ (2)

(||U|| is the 2-norm ofU, i.e.,||U|| =
√∑

s U2
s.)

Next, defineNe to be the number of times an error is made by the
algorithm in figure 1 – that is, the number of times thatzi 6= yi for
some(t, i) pair. We can then state the following theorem (see [3]
for a proof):

Theorem 1 For any training sequence(xi, yi) that is separable
with marginδ, for any value ofT , then for the perceptron algo-
rithm in figure 1

Ne ≤
R2

δ2

where R is a constant such that ∀i,∀z ∈
GEN(xi) ||Φ(xi, yi)− Φ(xi, z)|| ≤ R.

This theorem implies that if there is a parameter vectorU which
makes zero errors on the training set, then after at mostR2

δ2
passes

over the training set the training algorithm will converge to param-
eter values with zero training errors.1 A crucial point is that the
number of mistakes is independent of the number of candidates
for each example (i.e. the size ofGEN(xi) for eachi), depend-
ing only on the separation of the training data, where separation
is defined above. This is important because in ASR the number
of candidates inGEN(x) is generally exponential in the length
of the utterance. All of the convergence and generalization re-
sults in [3] depend on notions of separability rather than the size
of GEN.2

1To see this, note that if the algorithm makes a complete pass over the
training examples without making any errors, then it must have converged;

and furthermore, in the worst case it makesR
2

δ2
passes over the training

set, each with a single error, before converging.
2Note, however, that in practice as the size ofGEN becomes larger,

the separability of problems may well diminish, although this is not nec-
essarily the case. Even so, the lack of direct dependence on|GEN(x)|
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Fig. 2. Representation of a trigram model with failure transitions.

Two questions come to mind. First, are there guarantees for
the algorithm if the training data is not separable? Second, how
well does the algorithm generalizes to newly drawn test exam-
ples (under an assumption that both training and test examples are
drawn from the same, unknown distributionP (x, y))? [5] dis-
cusses how the theory for classification problems can be extended
to deal with both of these questions; [3] describes how these results
apply to NLP problems.

As a final note, following [3], we used theaveragedparame-
ters from the training algorithm in decoding test examples in our
experiments, because this provides better generalization to unseen
test examples. Saȳαti is the parameter vector after thei’th exam-
ple is processed on thet’th pass through the data in the algorithm
in figure 1. Then the averaged parametersᾱAVG are defined as
ᾱAVG =

∑
i,t ᾱ

t
i/NT . [5] originally proposed the averaged pa-

rameter method; it was shown to give substantial improvements in
accuracy for tagging tasks in [3].

3. WEIGHTED AUTOMATA ENCODING OF MODEL

This section describes how to encode the perceptron model in a
weighted finite state automaton (WFSA), so that the model can be
used to re-weight a word-lattice by simply intersecting the lattice
with the automaton. Efficient re-weighting of lattices is critical,
since it is part of both training and use. By encoding the models
as a WFSA, we can take advantage of general algorithms imple-
mented in the AT&T FSM library.

The feature set that we will investigate in the current paper
includes n-gram features plus the scaled cost given by the base-
line ASR system, i.e.−λ log P(A,W ). In principle, we could
learn the scaleλ to give the lattice cost in the same manner as the
weights to give to n-gram parameters, but for the trials that we will
present in the next section, we treat the weight of the lattice cost as
a constant scaling factor, and present results with various values3.

An n-gram model can be efficiently represented in a determin-
istic weighted finite-state automaton, through the use of failure
transitions [1]. Every string accepted by such an automaton has
a single path through the automaton, and the weight of the string is
the sum of the weights of the transitions in that path. In such a rep-
resentation, every state in the automaton represents an n-gram his-
tory h, e.g.wi−2wi−1, and there are transitions leaving the state
for every wordwi such that the featurehwi has a weight. There
is also a failure transition leaving the state, labeled with some re-
served symbolφ, which can only be traversed if the next symbol in

for the perceptron algorithm is somewhat surprising. For example, under
the same assumptions for the training set, the tightest known generalization
bounds for the support vector machine or large margin solution (which ex-
plicitly searches for the parameter vector with the largest separation on
training examples) contains alog |GEN(x)| factor which is not present
in the perceptron convergence or generalization bounds – see [3] for dis-
cussion.

3Note that lattice weights are interpreted as costs, which changes the
sign in the algorithm presented in figure 1.
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Fig. 3. Leaving all utterances in the training set for the language model
that produces the training lattice, versus removing utterances from the
training for the language model that produces their word-lattice. Word
error rate on Switchboard 2002 eval set at various lattice scale factors.

the input does not label any transition leaving the state. This fail-
ure transition points to the backoff stateh′, i.e. the n-gram history
h minus its initial word. Figure 2 shows how a trigram model can
be represented in such an automaton. See [1] for more details.

Note that in such a deterministic representation, the entire
weight of all features associated with the wordwi following his-
tory h must be assigned to the transition labeled withwi leaving
the stateh in the automaton. For example, ifh = wi−2wi−1, then
the trigramwi−2wi−1wi is a feature, as is the bigramwi−1wi and
the unigramwi. In this case, the weight on the transitionwi leav-
ing stateh must be the sum of the trigram, bigram and unigram
feature weights. If only the trigram feature weight were assigned
to the transition, neither the unigram nor the bigram feature con-
tribution would be included in the path weight. In order to ensure
that the correct weights are assigned to each string, every transi-
tion encoding an orderk n-gram must carry the sum of the weights
for all n-gram features of orders≤ k.

The perceptron algorithm is incremental, meaning that the
model parameters are updated after every training sentence. Be-
cause updating the n-gram parameters involves both the feature
summing described in the previous paragraph, and the perceptron
averaging presented in the last section, frequently updating the
model can be rather expensive. However, since a relatively small
subset of features change value after each sentence, one can im-
prove efficiency by summing and averaging only those transitions
which include the weight of updated features.

By encoding the perceptron model as an automata in this way,
the algorithm in figure 1 reduces to a series of general finite-state
operations, which were performed using the FSM library. Given
a word latticeLi, which encodes a weighted set of alternative hy-
pothesis transcriptions for utterancei, and a perceptron automata
P, zi from figure 1 is simply the least cost path through their inter-
section,λLi ◦ P, whereλ is the scale assigned to the word-lattice
costs. The features from this path are counted, as are the features
from the gold standard transcription, and the feature values are up-
dated as presented in the algorithm.

4. EMPIRICAL RESULTS

We present empirical results on the Switchboard 2002 eval test set.
The test set consists of 6081 sentences (63804 words) and has three
subsets: Switchboard 1, Switchboard 2, Switchboard Cellular.

Our training set consisted of 276726 transcribed utterances
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Fig. 4. Using the reference transcription as the gold standard, versus the
oracle best path through the lattice. Word error rate on Switchboard 2002
eval set at various lattice scale factors.

(3047805 words), with an additional 20854 utterances (249774
words) as held out data. For each utterance, we produced
a weighted word-lattice, representing alternative transcriptions,
from the ASR system. From each word lattice, we extracted the
oracle best path, which gives the best word-error rate from among
all of the hypotheses in the lattice. The oracle word-error rate for
the training set lattices was 12.2 percent.

To produce the word-lattices, each training utterance is pro-
cessed by the baseline ASR system. However, these same utter-
ances are what the acoustic and language models are built from,
which leads to better performance on the training utterances than
can be expected when the ASR system processes unseen utter-
ances. To somewhat control for this we partitioned the training
set into 28 sets, and built baseline Katz backoff trigram models for
each set by including only transcripts from the other 27 sets. Since
language models are generally far more prone to overtrain than
standard acoustic models, this goes a long way toward making the
training conditions similar to testing conditions.

The first trials look at a simple single-pass recognition system
that forms the basis of the AT&T Switchboard system. After each
iteration over the training set, the averaged perceptron model was
evaluated against the held-out training data, and the model with
the lowest word-error-rate was chosen for evaluation on the test
set. For each training scenario, we built 5 models, corresponding
to 5 lattice scaling factorsλ, from 0.5 to 8.0. Each graph shows
the baseline performance, which is without a perceptron model;
and performance of a perceptron built under our standard training
scenario. The standard training scenario is defined as

1. training lattices produced by removing utterances
from their own baseline LM training set

2. using the oracle best path as the gold standard

3. with trigram, bigram and unigram features

4. no n-best extraction from the word lattices

Figure 3 compares the standard scenario just presented with the
same scenario, except that the lattices were produced without re-
moving utterances from their own baseline LM training set, i.e.
number 1 above is changed. From this plot, we can see several
things. First, removing utterances from their own baseline LM
training set is necessary to get any improvement over the base-
line results at all. This underlines the importance of matching the
testing and training conditions for this approach. Our standard ap-
proach works best with a lattice scale of 4, which provides a 1.3
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Fig. 5. Using feature sets with n-grams of different orders. Word error
rate on Switchboard 2002 eval set at various lattice scale factors.

percent improvement over the baseline, 37.9 percent WER versus
39.2. All scalesλ from 1 to 8 are within 0.3% of this best result.

Figure 4 compares the standard training scenario with the
same scenario, except the reference transcription is used as the
gold standard instead of the oracle best path. At the best scal-
ing factors, the difference is 0.4 percent, but the reference trained
model is much more sensitive to the scaling factor.

Figure 5 shows the result of including fewer features in the
perceptron model. Including all n-grams of order 3 or less is the
best performer, but the gain is very small versus using just bi-
grams and unigrams. Unigrams and bigrams both contribute a fair
amount to performance, but the trigrams add very little over and
above those. The lower order models are less sensitive to the lat-
tice scale factor.

Finally, figure 6 shows the result of performing n-best extrac-
tion on the training and testing lattices4. With n=1000, the per-
formance is essentially the same as with full lattices, and the per-
formance degrades as fewer candidates are included. The n-best
extracted models are less sensitive to the lattice scale factor.

The AT&T Switchboard system performs a rescoring pass,
which allows for better silence modeling and replaces the trigram
language model score with a 6-gram model. The standard sce-
nario outlined above yields a 1.3 percent improvement over the
first pass accuracy results. The improvement drops to 0.5 percent
after rescoring. This can be explained by the mismatch between
the training and test conditions. Perhaps, by making the training
lattices more similar to this rescoring condition, further improve-
ment can be obtained. The full system also has speaker normal-
ization and adaptation as well as another rescoring pass with more
detailed acoustic models. Although we expect the effect of acous-
tic model changes to be minor, we may need to better integrate the
training setup with the full system for improved results.

5. DISCUSSION
Regarding the training, several observations can be made. In ev-
ery training scenario, the best perceptron model was obtained after
only one or two passes over the training data. The approach is
fairly parsimonious in the feature space, since only n-grams from
the best scoring path and the oracle path are updated in the model.
In the perceptron built in our standard scenario, the total number of
features in the model is 1408571, consisting of 30642 unigram fea-
tures, 438425 bigram features and 939504 trigram features. Fur-

4The oracle word-error rates for the 50-best, 100-best and 1000-best
training sets are 20.8, 19.7, and 16.7 percent, respectively.
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Fig. 6. N-best extraction on training lattices with various values of N,
versus using the lattices. Word error rate on Switchboard 2002 eval set at
various lattice scale factors.

thermore, techniques which reduce the size of the model – e.g. n-
best extraction and only using bigrams and unigrams – have little
impact on accuracy.
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