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Abstract
We exactly settle the complexity of graph realization, graph rigidity, and graph global rigidity
as applied to three types of graphs: “globally noncrossing” graphs, which avoid crossings in all
of their configurations; matchstick graphs, with unit-length edges and where only noncrossing
configurations are considered; and unrestricted graphs (crossings allowed) with unit edge lengths
(or in the global rigidity case, edge lengths in {1, 2}). We show that all nine of these questions
are complete for the class ∃R, defined by the Existential Theory of the Reals, or its complement
∀R; in particular, each problem is (co)NP-hard.

One of these nine results—that realization of unit-distance graphs is ∃R-complete—was shown
previously by Schaefer (2013), but the other eight are new. We strengthen several prior results.
Matchstick graph realization was known to be NP-hard (Eades & Wormald 1990, or Cabello et
al. 2007), but its membership in NP remained open; we show it is complete for the (possibly)
larger class ∃R. Global rigidity of graphs with edge lengths in {1, 2} was known to be coNP-hard
(Saxe 1979); we show it is ∀R-complete.

The majority of the paper is devoted to proving an analog of Kempe’s Universality Theorem—
informally, “there is a linkage to sign your name”—for globally noncrossing linkages. In partic-
ular, we show that any polynomial curve ϕ(x, y) = 0 can be traced by a noncrossing linkage,
settling an open problem from 2004. More generally, we show that the nontrivial regions in the
plane that may be traced by a noncrossing linkage are precisely the compact semialgebraic re-
gions. Thus, no drawing power is lost by restricting to noncrossing linkages. We prove analogous
results for matchstick linkages and unit-distance linkages as well.
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1 Introduction

The rise of the steam engine in the mid-1700s led to an active study of mechanical linkages,
typically made from rigid bars connected together at hinges. For example, steam engines
need to convert the linear motion of a piston into the circular motion of a wheel, a problem
solved approximately by Watt’s parallel motion (1784) and exactly by Peaucellier’s inversor
(1864) [5, Section 3.1]. These and other linkages are featured in an 1877 book called How to
Draw a Straight Line [10] by Alfred Bray Kempe—a barrister and amateur mathematician
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Graph type Realization Rigidity Global rigidity Universality
General ∃R-complete ∀R-complete ∀∀∀RRR-complete Compact semi-

[17] [17] (CoNP-hard [16]) algebraic [12]
Globally noncrossing ∃∃∃RRR-complete ∀∀∀RRR-complete ∀∀∀RRR-complete Compact
(no configs. cross) semialgebraic
Matchstick graph ∃∃∃RRR-complete ∀∀∀RRR-complete ∀∀∀RRR-complete Bounded
(unit + noncrossing) (NP-hard [6]) semialgebraic
Unit edge lengths ∃R-complete ∀∀∀RRR-complete Open (do they Compact
(allowing crossings) [17] even exist?) semialgebraic
Edge lengths in {1, 2} ∃R-complete ∀∀∀RRR-complete ∀∀∀RRR-complete Compact
(allowing crossings) [17] (CoNP-hard [16]) semialgebraic
Table 1 Summary of our results (bold) compared with old results (cited). The rows give the

special types of graphs considered. The middle three columns give complexity results for the
three natural decision problems about graph embedding; all completeness results are strong. The
rightmost column gives the exact characterization of drawable sets.

in London, perhaps most famous for his false “proof” of the Four-Color Theorem [11] that
nonetheless introduced key ideas used in the correct proofs of today [2, 15].

Kempe’s Universality Theorem.

Kempe wondered far beyond drawing a straight line by turning a circular crank. In 1876,
he claimed a universality result, now known as Kempe’s Universality Theorem: every poly-
nomial curve ϕ(x, y) = 0 can be traced by a vertex of a 2D linkage [9]. Unfortunately, his
“proof” was again flawed: the linkage he constructs indeed traces the intended curve, but
also traces finitely many unintended additional curves. Fortunately, his idea was spot on.

Many researchers have since solidified and/or strengthened Kempe’s Universality Theo-
rem [8, 7, 12, 1, 17]. In particular, small modifications to Kempe’s gadgets lead to a working
proof [1, 5, Section 3.2]. Furthermore, the regions of the plane drawable by a 2D linkage
(other than the entire plane R2) are exactly compact semialgebraic regions∗ [12, 1]. By
carefully constructing these linkages to have rational coordinates, Abbott et al. [1] showed
how to reduce the problem of testing isolatedness of a point in an algebraic set to testing
rigidity of a linkage. Isolatedness was proved coNP-hard [13] and then ∀R-complete† [17];
thus linkage rigidity is ∀R-complete.

Our results: no crossings.

See Table 1 for a summary of our results in comparison to past results. Notably, all known
linkage constructions for Kempe’s Universality Theorem (and its various strengthenings)
critically need to allow the bars to cross each other. In practice, certain crossings can
be made physically possible, by placing bars in multiple parallel planes and constructing
vertices as vertical pins. Without extreme care, however, bars can still be blocked by other

∗A compact planar region is semialgebraic if it can be obtained by intersecting and/or unioning
finitely many basic sets defined by polynomial inequalities p(x, y) ≥ 0.

†The class ∀R = co-∃R consists of decision problems whose complement (inverting yes/no instances)
belong to ∃R. The class ∃R refers to the problems (Karp) reducible to the existential theory of the
reals (∃x1 : · · · ∃xn : π(x1, . . . , xn) for a Boolean function π : R → {0, 1}), which is somewhere between
NP and PSPACE (by [4]). The classic example of an ∃R-complete problem is pseudoline stretchability
[14].
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pins, and it seems difficult to guarantee crossing avoidance for complex linkages. Beyond
these practical issues, it is natural to wonder whether allowing bars to cross is necessary
to achieve linkage universality. Don Shimamoto first posed this problem in April 2004,
and it was highlighted as a key open problem in the first chapter of Geometric Folding
Algorithms [5].

We solve this open problem by strengthening most of the results mentioned above to work
for globally noncrossing graphs, that is, graphs plus edge-length constraints that alone
force all configurations to be (strictly) noncrossing.∗ In particular, we prove the following
universality and complexity results:
1. The planar regions drawable by globally noncrossing linkages are exactly the compact

semialgebraic regions (and R2), settling Shimamoto’s 2004 open problem.
2. Testing whether a globally noncrossing graph has any valid configurations is ∃R-complete.
3. Testing rigidity is strongly ∀R-complete even for globally noncrossing linkages drawn

with polynomially bounded integer vertex coordinates and constant-sized integer edge
lengths.

4. Testing global rigidity (uniqueness of a given embedding) is strongly ∀R-complete even
for globally noncrossing linkages drawn with polynomially bounded integer vertex coor-
dinates and constant-sized integer edge lengths.

Our techniques are quite general and give us results for two other restricted forms of graphs
as well. First, matchstick graphs are graphs with unit edge-length constraints, and where
only (strictly) noncrossing configurations are considered valid. We prove the following uni-
versality and complexity results:
5. The planar regions drawable by matchstick graphs are exactly the bounded semialgebraic

regions (and R2). Notably, unlike all other models considered, matchstick graphs enable
the representation of open boundaries in addition to closed (compact) boundaries.

6. Recognizing matchstick graphs is (strongly) ∃R-complete. This result strengthens a 25-
year-old NP-hardness result [6, 3], and settles an open question of [17].

7. Testing rigidity or global rigidity of a matchstick graph is strongly ∀R-complete.
Second, we consider restrictions on edge lengths to be either all equal (unit) or all in {1, 2},
but at the price of allowing crossing configurations. Recognizing unit-distance graphs is
already known to be ∃R-complete [17]. We prove the following additional universality and
complexity results:
8. The planar regions drawable by unit-edge-length linkages are exactly the compact semi-

algebraic regions (and R2), proving a conjecture of Schaefer [17].
9. Testing rigidity of unit-edge-length linkages is strongly ∀R-complete, proving a conjecture

of Schaefer [17].
10. Testing global rigidity of linkages with edge lengths in {1, 2} is strongly ∀R-complete.

This result strengthens a 35-year-old strong-coNP-hardness result for the same scenario
[16]. While it would be nice to strengthen this result to unit edge lengths, we have been
unable to find even a single globally rigid equilateral linkage larger than a triangle.

We introduce several techniques to make noncrossing linkages manageable in this setting.
In Section 4.1 we define extended linkages to allow additional joint types, in particular,
requiring angles between pairs of bars to stay within specified intervals. Section 4.2 then

∗Thus, the noncrossing constraint can be thought of as being “required” or not of a configuration; in
either case, the configurations (even those reachable by discontinuous motions) will be noncrossing.

SoCG 2016
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shows how to draw a polynomial curve and obtain Kempe’s Universality Theorem with
these powerful linkages while avoiding crossings, by following the spirit of Kempe’s original
construction but with specially designed modular gadgets to guarantee no crossings between
(or within) the gadgets. We simulate extended linkage with linkages that have chosen
subgraphs marked as rigid. In turn, in Section 3, we simulate these “partially rigidified”
linkages with the three desired linkage types: globally noncrossing, unit-distance or {1, 2}-
distance, and matchstick.

2 Description of the Main Construction

The heart of this paper is a single, somewhat intricate linkage construction. In this section,
we describe and discuss the properties of this construction in detail, after building up the
necessary terminology.

2.1 Linkages and Graphs
Unless otherwise specified, all graphs G = (V (G), E(G), `G) in this text are connected,
edge-weighted with positive edge lengths `G(e) > 0, and contain no self-loops.

We use standard definitions for abstract and configured linkages/graphs the con-
figuration space of a linkage/graph, and rigidity and global rigidity of a linkage/graph.
(For concrete notation, a linkage is specified by a weighted graph G together with a choice of
pin locations P (w) ∈ R2 for vertices w in a chosen subsetW ⊂ V (G) of pinned vertices.)

A configuration is called noncrossing if it has no edge intersections in the plane (other
than common endpoints of adjacent edges); a linkage all of whose configurations are non-
crossing is called globally noncrossing. For such a linkage, the global minimum feature
size is defined as the infimum of the minimum feature size of the configurations.

A combinatorial embedding σ for a graph G consists of a cyclic ordering σv of v’s
incident edges for each vertex v ∈ V (G), and a configuration C agrees with σ if v’s edges are
arranged counterclockwise around point C(v) in order σv. Whenever edge (v, u) is followed
by (v, w) in σv, the two-edge path Λ = (u, v, w) is an angle chain of σ at v. (See the full
paper for complete definitions.)

2.2 Constrained Linkages
We will make use of a number of special-purpose “constraints” or “annotations” that may
be attached to linkages to artificially modify their behavior, such as “rigid constraints” that
“rigidify” a subgraph into a chosen configuration while allowing the rest of the linkage to
move freely. These annotations do not affect the linkage itself; instead, they merely indicate
which configurations of the linkage they consider acceptable. The language of constraints
allows us to separate a desired effect from the implementation or construction that enforces
that effect.

I Definition 2.1. A constraint Con on an abstract linkage L is specified by a subset of
the configuration space, Con ⊆ Conf(L), and we say the configurations C ∈ Con satisfy
constraint Con. A constrained linkage L is an abstract linkage L0 together with a fi-
nite set K of constraints on L0, and the constrained configuration space is defined as
Conf(L) := Conf(L0) ∩

⋂
Con∈K Con. In other words, constrained linkage L simply ignores

any configurations of L0 that don’t satisfy all of its constraints.
All terms discussed in Section 2.1—realizability, rigidity, global rigidity, etc.—apply to

equally well to constrained linkages via their constrained configuration space.
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I Definition 2.2. A rigid constraint RigidConL(H,CH) on a linkage L = (G,W,P ) is
specified by a connected subgraph H ⊆ G∗ together with a configuration CH of H. A
configuration C ∈ Conf(L) satisfies the rigid constraint when C induces a configuration
C|H on H that is congruent to the given CH , i.e., differs only by a (possibly orientation-
reversing) Euclidean transformation. When a constrained linkage M contains constraint
RigidConM(H,CH), we say (H,CH) is a rigidified subgraph ofM. A constrained linkage
all of whose constraints are rigid constraints is called a partially rigidified linkage.

2.3 Drawing with Linkages and Graphs
I Definition 2.3 (Linkage Trace and Drawing). For a linkage L and a tuple X = (v1, . . . , vk)
of distinct vertices of L, the trace of X is defined as the image πX(Conf(L)) ⊂ (R2)k, where
πX is the projection map sending C ∈ Conf(L) to πX(C) := (C(v1), . . . , C(vk)). A linkage
(L, X) is said to draw† its trace, and a set R ⊆ (R2)k is drawable (by a linkage) if it can
be expressed as the trace of some k vertices of a linkage.

We single out some drawings as particularly nice:

I Definition 2.4 (Rigid Drawing). Say (L, X) draws its trace rigidly if the map πX has
finite fibers, i.e., for any p ∈ πX(Conf(L)), there are only finitely many configurations
C ∈ Conf(L) with πX(C) = p.

In particular, if p is isolated in πX(Conf(L)), then any configuration C with πX(C) = p

is rigid, because the discrete set π−1
X (p) contains no nonconstant continuous paths.

I Definition 2.5 (Continuous Drawing). Say (L, X) draws its trace continuously if the
map πX has the path lifting property: for any configuration C ∈ Conf(L) and path
γ : [0, 1]→ πX(Conf(L)) in the trace starting at πX(C), there is a path γ′ : [0, 1]→ Conf(L)
starting at γ′(0) = C and lifting γ, i.e., γ = πX ◦ γ′.

In particular, if a point p ∈ πX(Conf(L)) is not isolated, then any configuration C with
πX(C) = p is not rigid, because a nontrivial continuous path beginning at p can be lifted to
a nontrivial path beginning at C. We are especially interested in cases where (L, X) draws
both continuously and rigidly; these concepts were introduced in [1] for their usefulness in
proving computational hardness of linkage rigidity, and we rely on them for similar purposes.
We make use of an even stronger notion as well:

I Definition 2.6 (Perfect Drawing). If the map πX is a homeomorphism between Conf(L)
and the trace, we say (L, X) draws perfectly.

I Definition 2.7 (Linkage Simulation). When (L, X) draws precisely the full configuration
space Conf(M) of another linkageM, we say that (L, X) simulates M. It may contin-
uously, rigidly, or perfectly simulate M if it draws Conf(M) in this manner.

2.4 Specification of Main Theorem
For a collection F = {f1, . . . , fs} of polynomials in R[x1, y1, . . . , xm, ym] = R[−→xy], the alge-
braic set defined by F is the set of common zeros,

Z(F ) := {−→xy ∈ R2m | f1(−→xy) = · · · = fs(−→xy) = 0}.

∗Our notion of “subgraph” requires the edge-lengths of H to agree with those in G.
†This “drawing” need not be continuous. For example, the linkage may have a disconnected trace.

SoCG 2016
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The primary technical construction in this paper builds a globally noncrossing, partially
rigidified linkage L(F ) that draws precisely the algebraic set Z(f1, . . . , fs) ⊆ R2m, or at
least a bounded piece thereof, up to a translation of R2m. Why is the translation necessary?
Without it, some algebraic sets would require the drawing vertices in X to collocate at some
or all of the linkage’s configuration space∗, precluding the possibility of global noncrossing.

We are now prepared to precisely specify the properties of this construction, from which
the results listed in Table 1 follow as corollaries. We thoroughly detail these properties
here, so that the corollaries may be derived solely from Theorem 2.8’s statement without
referring to the specifics of its proof (with one small exception, discussed in Section 4.3).
This also allows for maximal reuse: the commonalities in our arguments for our three linkage
contexts—unconstrained globally noncrossing linkages in Section 3.1, unit-distance linkage
in Section 3.2, and matchstick linkages in Section 3.3—have been unified and generalized into
Theorem 2.8, so only features unique to each context need be discussed in Sections 3.1–3.3.

The Main Theorem is divided into three parts because it must be used in subtly different
ways by the four types of results we seek. Hardness of realizability requires a polynomial-
time construction of an abstract linkage that draws Z(f1, . . . , fs) without knowing whether
the resulting configuration space is empty, whereas proving hardness of rigidity and global
rigidity requires the polynomial-time construction of a linkage together with a known con-
figuration. We thus separate these into different Parts of Theorem 2.8 with slightly different
assumptions about the input polynomials fi (Part II for realizability, Part III for rigidity
and global rigidity). When proving universality, we must prove existence of a linkage to
draw any compact semialgebraic set, but the coefficients of the polynomials defining this
set may be non-rational or non-algebraic, as might the edge-lengths and coordinates of the
resulting linkage, so we isolate this in Part I, away from algorithmic and efficiency concerns.

We measure the “size” of polynomials naïvely: a polynomial f ∈ R[x1, y1, . . . , xm, ym]
with total degree d is specified by #Coeffs(f) :=

(2m+d
d

)
= poly(md, dd) real coefficients,

using dense representation.† If f ’s coefficients are integers with maximum magnitudeM , we
record its size as Size(f) := M · #Coeffs(f) = poly(md, dd,M) unary digits (not binary!).
For a set F = {f1, . . . , fs} of s polynomials in R[x1, y1, . . . , xm, ym] with maximum total
degree d, we set #Coeffs(F ) := s ·M ·

(2m+d
d

)
= poly(md, dd, s), and if these coefficients are

integers with maximum magnitude M , then Size(F ) := s ·M ·
(2m+d

d

)
= poly(s,M,md, dd).

I Theorem 2.8. Part I. Take as input a collection of polynomials F = {f1, . . . , fs}, each
in R[x1, y1, . . . , xm, ym]. Then we may construct a partially rigidified linkage L = L(F )
that draws, up to translation, a bounded portion of the algebraic set Z(F ): specifically,
there is a translation T on R2m and a subset X of m vertices of L such that

T (Z(F ) ∩ [−1, 1]2m) ⊆ πX(Conf(L)) ⊆ T (Z(F )).

Furthermore,
1. Vertices X draw this trace rigidly and continuously.
2. The number of vertices and edges in L is poly(#Coeffs(F )).
3. Each edge of L has length Ω(1), and L is globally noncrossing with global minimum

feature size Ω(1).

∗For example, two distinct vertices that draw the trace {((0, 0), (0, 0))} ⊂ (R2)2 must meet.
†The measure #Coeffs(f) does not count the nonzero coefficients of f ; instead, it counts the total

number of monomials that have total degree at most that of f .
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4. For each constraint RigidConL(H,CH) on L, H is a tree that connects to G \ H
precisely at leaves of H, and configuration CH has all edges parallel to the x- or
y-axes. Each edge of G is contained in at most one rigidified subgraph (H,CH).

5. There is a combinatorial embedding σ of G such that every configuration C ∈ Conf(L)
agrees with σ. Furthermore, if v is not an internal vertex of any constrained tree H,
then for each angle chain Λ at v, angle ∠C(Λ) lies strictly between 60◦ and 240◦.

6. Linkage L has precisely |P | = 3 pinned vertices, which belong to one of the rigidified
trees (H,CH) and are not collinear in CH .

Part II. If polynomials fi have integer coefficients, we may bound the complexity of L as
follows:
7. All edge-lengths in L are rational, with numerators bounded by poly(Size(F )) and

denominators bounded by O(1).
8. Constrained linkage L, the set X of vertices, translation T , and combinatorial embed-

ding σ may be constructed from F deterministically in time poly(Size(F )).
Part III. Finally, if the polynomials fi each satisfy fi(

−→0 ) = 0, we may additionally compute
an initial configuration C0 satisfying:
9. All coordinates of C0 are rational numbers with magnitude bounded by poly(Size(F ))

and with O(1) denominators.
10. C0 is the only configuration of L that projects to T (−→0 ) ∈ πX(Conf(L)).
11. C0 may also be computed deterministically in time poly(Size(F )).

3 Using the Main Theorem: Three Linkage Models

We apply Theorem 2.8 in three separate contexts: for globally noncrossing linkages (those
designed to make crossing impossible), for unit-distance or {1, 2}-distance linkages (where
crossing is allowed), and for matchstick linkages (which have unit-length edges, and crossing
configurations are ignored). To this end, we show that the partially rigidified linkage L(F )
resulting from Theorem 2.8 may be simulated by each type of linkage. Primarily, this
simulation is achieved by “implementing” rigidified orthogonal trees in each context: for
globally noncrossing and matchstick linkages, we show that each rigid constraint in L(F )
may be replaced by a sufficiently narrow rigid assembly. The unit-distance linkages are
easier, as crossings may be ignored, so we can use standard techniques.

3.1 Globally Noncrossing Linkages
For each rigidified orthogonal tree in L(F ) (from Theorem 2.8), we may draw a polygon
P that slightly thickens the tree, and then construct a globally rigid graph G whose outer
boundary is P . This graph G may be constructed with both integer coordinates and integer,
O(1) edge-lengths (when scaled appropriately), as illustrated in Figure 1. Replacing each
tree in this way, and making sure that each tree is thickened by less than half of L(F )’s
global minimum feature size (as guaranteed by property 3), results in the desired globally
noncrossing linkage simulating L(F ).

We may now sketch proofs for hardness of realizability, hardness of rigidity and global
rigidity, and universality for globally noncrossing linkages.

I Theorem (Hardness of Globally Noncrossing Realizability). Deciding whether a given ab-
stract weighted graph G is realizable, even when G is promised to be globally noncrossing and
has integer edge-lengths of size O(1), is strongly ∃R-complete.

SoCG 2016
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(a) The thickened outline.
(b) Graph G is built as a
polyomino with extra bars at
sharp corners.

A B

CD

E

FG
H

I

(c) Each globally rigid monomino has
integer coordinates and integer edge-
lengths: AB = 720, AE = 424,
EF = 289, GI = 329, and HF = 510.
(A,E, F are not quite collinear.)

Figure 1 Each partially rigidified orthogonal tree may be simulated with a globally rigid graph
G that slightly thickens the tree.

Proof Sketch. We reduce from the CommonZero problem, which asks whether a collection
of polynomials F = {f1, . . . , fs}, each in Z[x1, y1, . . . , xm, ym], has a common zero. This
problem is ∃R-complete, even when the polynomials have constant total degree and constant
coefficients, and furthermore, all common zeroes are promised to lie in the box [−1, 1]2m.
By simulating the Main Theorem (Part II) as described above, we may construct a globally
noncrossing linkage M that draws a translation of Z(F ), which means M is realizable
exactly when Z(F ) is nonempty. J

I Theorem (Hardness of Noncrossing Rigidity and Global Rigidity). Deciding whether a given
configured weighted graph (G, C0) is rigid, when G is promised to be globally noncrossing
(so in particular, C0 is noncrossing) and C0 has integer coordinates and constant-sized
integer edge-lengths, is strongly ∀R-complete. It remains ∀R-complete if “rigid” is replaced
by “globally rigid”.

Proof Sketch. As in [1, 17], we reduce from the complement of the H2N problem, which asks
whether a given set of homogeneous polynomials F in Z[x1, y1, . . . , xm, ym] has a nonzero
common root. This problem is ∃R-hard even when the given polynomials have constant
total degree and constant coefficients. By simulating the Main Theorem (Part III) as above,
we may construct a configured globally noncrossing linkage L that continuously and rigidly
draws a neighborhood of 0 ∈ Z(F ) (up to translation). Then the initial configuration of L
is flexible if and only if 0 is not isolated in Z(F ), which by homogeneity happens precisely
when Z(F ) has any nonzero point. On the other hand, if Z(F ) contains only 0, then by
property 10 of Theorem 2.8, L is in fact globally rigid. J

I Theorem (Universality of Globally Noncrossing Linkages). For any compact semialgebraic
set R ⊂ R2, there is a globally noncrossing linkage L that draws R.

Proof Sketch. The set R may be written as a coordinate projection of some compact al-
gebraic set R′ = Z(F ) ⊂ R2m, so it suffices to draw a translation of R′. By scaling, we
may assume R′ ⊆ [−1, 1]2m. Simulating the Main Theorem (Part I) as above provides the
desired globally noncrossing linkage that draws a translation of R′, and hence draws R. J
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3.2 Unit- and {1, 2}-Distance Linkages
In this context, we do not use the globally noncrossing properties of the Main Construction
at all. A simpler, though still careful construction is likely possible, but it does not seem that
the results in this section follow straightforwardly from prior constructions, such as [1, 12, 17].
Indeed, we rely crucially on polynomially bounded integer edge lengths, not just coordinates.
So Theorem 2.8 may be slightly overpowered for this purpose, but if all you have is a
hammer. . .

To simulate Theorem 2.8, we begin by simulating each edge of integer length n by a
reinforced bar graph, which is formed by adjoining n−1 degenerate {1, 1, 2}-sided triangles
along their unit edges (as in [16]). For each rigidified orthogonal tree T , we construct a rigid
integer grid, by combining many reinforced bars, and inserting one more reinforced bar along
the hypotenuse of a 3-4-5 right triangle to preserve orthogonality. This grid stands in for
tree T , connecting at the grid nodes corresponding to T ’s leaves. This is sufficient to prove
hardness of global rigidity for {1, 2}-distance graphs, as in the previous section.

Finally, as described in [17], length-2 edges may be simulated continuously and rigidly
by unit-distance graphs (by combining two copies of Moser’s Spindle), and so Theorem 2.8
itself may be simulated continuously and rigidly by unit-distance linkages.

Proofs of hardness proceed analogously to the arguments in Section 3.1, but restricting
to unit edge lengths offers a noteworthy challenge for universality. To illustrate, the circle
C = {(x, y) | x2 + y2 = r2} (where r > 0 is any uncomputable number, such as Chaitin’s
constant) can be drawn easily by a linkage (using an edge of length r), but simulating such
an edge with a unit-distance graph is impossible. As a workaround, we instead rely on pins
to introduce non-algebraic values. Indeed, we may slightly generalize curve C by introducing
new variables (a, b) and considering the modified curve

C ′ = {((x, y), (a, b)) ∈ R4 | x2 + y2 = a2}.

As C ′ is now defined by polynomials with integer coefficients, the Main Theorem (Part II)
applies and may be simulated by a unit distance linkage as above. Finally, with one pin, we
may fix the values a = r and b = 0, which recovers the desired circle C. Suitably generalized,
this argument can be made to work for arbitrary compact semialgebraic sets.

3.3 Matchstick Linkages
I Definition 3.1 (Noncrossing Constraint). We define a noncrossing constraint, NXConL,
on a linkage L by declaring that NXConL is only satisfied by noncrossing configurations;
in other words, the constrained configuration space Conf(L, {NXConL}) is, by definition,
NXConf(L). We refer to a constrained linkage with a noncrossing constraint (and no other
constraints) as an NX-constrained linkage.

NX-constrained linkages may seem similar to globally noncrossing linkages, but there is
an important distinction. Very few linkages are globally noncrossing—this is a stringent,
intrinsic property that the linkage must satisfy. By contrast, any linkage can be annotated
with an NX-constraint, which does not change the fact that crossing configurations may
exist, but instead simply tells the observer to ignore them. For example, if G is the unit-
distance graph with 5 edges forming two abutting equilateral triangles, then G is neither
globally noncrossing nor globally rigid, since the triangles may be “folded” on top of each
other. The constrained linkage M = (G, {NXConG}), on the other hand, is globally rigid:
M has only one configuration, because the folded (crossing) configuration of G is rejected
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byM’s constraint. We have not changed the structure of the linkage, only the lens through
which it is viewed.

I Definition 3.2 (Matchstick Linkages). We define an abstract matchstick linkage as
an NX-constrained abstract unit-distance linkage; a configured matchstick linkage ad-
ditionally comes with a (necessarily unit-edge-length and noncrossing) configuration.

To simulate Theorem 2.8 with matchstick linkages, we first simulate the integer-length
edges with edge polyiamonds, with wing edges inserted along each angle chain, as shown
in Figure 2. These wing edges enforce consistent orientation of the edge polyiamonds.
To rigidify orthogonal trees, we may brace selected angle chains at 90◦ with a 5-12-13 right
triangle as shown. As in Section 3.1, these assemblies are narrow enough to avoid unplanned
crossings.

Matchstick linkages (more generally, NX-constrained linkages) are unique among the
three contexts because their traces are not always closed. The simple NX-constrained linkage
A in Figure 3 draws an annulus with one open boundary, because the configurations of the
underlying linkage that have v on the inner boundary are crossing and hence excluded by
A’s constraint. We prove a stronger universality result: matchstick linkages can draw every
bounded semialgebraic set in R2. Our argument, however, involves our proof of Theorem 2.8,
not just its statement; we discuss how in Section 4.3.

P

Q

o a

cb

Figure 2 Left: Edge polyiamonds used to simulate edges of integer
length. Right: Edge polyiamonds braced at 90◦.

v

Figure 3 The trace of
an NX-constrained link-
age need not be closed.

4 Extended Linkages and the Main Construction

4.1 Defining Extended Linkages
For convenience and clarity, we define and use extended linkages, which are constrained
linkages whose constraints are tailored for the specifics of our construction. The first of
these constraints, the cyclic constraint, specifies a preferred arrangement of edges around
each vertex.

I Definition 4.1 (Cyclic Constraint). For an abstract linkage L with combinatorial embed-
ding σ, a configuration C of L satisfies the cyclic constraint CyclicConL(σ) if, for each
vertex v with σv = [e1, . . . , edeg(v)], segments C(e1), . . . , C(edeg(v)) intersect only at C(v)
and are arranged counterclockwise around C(v) in this order.

I Definition 4.2 (Sliceform Constraint). For a constrained abstract linkage L possessing a
cyclic constraint CyclicConL(σ), a Sliceform Constraint, SliceConL(S), is specified by a
subset S ⊂ V (G) of (some or all of the) vertices of degree 4. A configuration C ∈ Conf(L)
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(necessarily satisfying CyclicConL(σ)) satisfies the sliceform constraint SliceConL(S) if, for
each sliceform vertex v ∈ S, segments C(e1) and C(e3) are collinear and C(e2) and C(e4)
are collinear, where σv = [e1, e2, e3, e4].

Sliceforms allow a limited form of “nonplanar” interaction while still being simulatable
without crossings (c.f. Figure 5h), so they are our primary tool in circumventing the diffi-
culties of planarity.

I Definition 4.3 (Angle Constraint). If linkage L has a cyclic constraint CyclicConL(σ), an
angle constraint, AngleConL(A,∆), is specified by an assignment of an angle 0 ≤ A(Λ) ≤
2π and an angle tolerance ∆(Λ) ≥ 0 to each angle chain Λ of L, with the condition that A
assigns a total of 2π to the angle chains around each vertex.

A configuration C ∈ Conf(L) (necessarily satisfying CyclicConL(σ)) satisfies the angle
constraint AngleConL(A,∆) if, for each angle chain Λ, angle ∠C(Λ) lies in the closed interval

[A(Λ)−∆(Λ), A(Λ) + ∆(Λ)].

In particular, any angle chain with ∆(Λ) = 0 is rigid: its angle in C must be exactly A(Λ).

I Definition 4.4 (Extended Linkage). An (ε, δ)-extended linkage where 0 < δ < ε < π/4
is defined as a constrained linkage L whose constraints K have the form

K = {CyclicConL(σ), SliceConL(S),AngleConL(A,∆)},

where at each angle chain Λ of L, A(Λ) ∈ {90◦, 180◦, 270◦, 360◦} and ∆(Λ) ∈ {0, δ, ε}. We
will call L simply an extended linkage when ε and δ are clear from context.

4.2 Detailed Overview of Strategy
Suppose we are given a finite set F of polynomials in R[x1, y1, . . . , xm, ym]. In this section, we
discuss how to construct an extended linkage that draws a bounded portion of the common
zero set Z(F ), i.e., something between Z(F ) ∩ [−1, 1]2m and Z(F ), up to a translation.
Our construction uses a transformation to polar coordinates similar to the one used in
Kempe’s original argument [9] and the corrected construction of Abbott et al. [1]: in place of
rectangular coordinates (xj , yj), we use angles (αj , βj) related by (xj , yj) = 2r ·Rect(αj , βj),
where

Rect(α, β) := (cosα, sinα) + (− sin β, cosβ)− (1, 1), (1)

where radius 2r is carefully chosen. Note that Rect(0, 0) = (0, 0). We may write this
equivalently as

xj = r
(
eiαj + e−iαj + ieiβj − ie−iβj − 2

)
yj = r

(
−ieiαj + ie−iαj + eiβj + e−iβj − 2

)
.

(2)

By making this latter substitution into each polynomial f ∈ F , we arrive at a representation
of the form

f(−→xy(
−→
αβ)) = f(0) +

3∑
u=0

∑
I∈Coeffs(2m,d)

iu · du,I ·
(
ei·(I·

−→
αβ) − 1

)
, (3)

where
−→
αβ := (α1, β1, . . . , αm, βm), each du,I is a nonnegative real number, and

Coeffs(2m, d) := {(a1, . . . , a2m) ∈ Z2m | |a1|+ · · ·+ |a2m| ≤ d}.
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a b

e f

a b

e f

Figure 4 Left: The Parallel Gadget allows e to move freely in a neighborhood of its initial
position while forcing ef to remain parallel to ab. Right: a schematic representation of the same
gadget.

Even though f(−→xy(
−→
αβ)) is real, this complex representation proves more useful for compu-

tations below.
We use this polar representation as a template to compute each polynomial f in the

linkage. Indeed, much like in the strategies referenced above, we provide gadgets for the
following tasks.

The Start Gadget (Figure 5d) converts from rectangular position (xj , yj) to polar angles
(αj , βj).
The Angle Average Gadget (Figure 5c) allows adding and subtracting angles to construct
all of the I ·

−→
αβ values.

The Vector Creation Gadget (Figure 5e) and Vector Rotation Gadget (Figure 5f) compute
the vectors iu · du,I · ei(I·

−→
αβ).

The Vector Average Gadget (Figure 6) allows adding vectors to compute the values
f(−→xy(

−→
αβ))− f(0) for each f ∈ F .

The End Gadget (Figure 5g) constrains these values to equal −f(0).
We employ several new ideas to ensure the resulting extended linkage E(F ) is noncrossing.
First, we construct a rigid grid of large square cells (with side-length 10R). Each gadget
is isolated in one or a constant number of these cells, and information is passed between
gadgets/cells only using sliceform vertices along grid edges. In this way, these modular gad-
gets may be analyzed individually, as there is no possibility for distinct gadgets to intersect
each other. We therefore rely on the Copy Gadget (Figure 5a) to copy angles and propagate
them along paths of cells to distant gadgets in the grid. The Crossover Gadget (Figure 5b)
allows these paths to cross, so we are not restricted to planar communication between gad-
gets. These gadgets make frequent use of the Parallel Gadget in Figure 4, which (with pins
removed) keeps segments parallel without otherwise restricting motion. Figure 7 shows an
example of the gadgets working together.

The linkage E(F ) is an (ε, δ)-extended linkage, where ε and δ (the angle tolerances
in AngleConL(A,∆)) are used in the following manner. The parameter ε constrains bar
movement enough to protect against crossings and to ensure uniqueness. By contrast, δ
serves (morally) as a lower bound: in each gadget we construct, we ensure that every angle
chain with tolerance δ can in fact realize any offset in the entire interval [−δ, δ]—this is how
we ensure we can draw a large enough portion of Z(F ).

Finally, we simulate linkage E(F ) with a partially rigidified linkage L(F ), in two steps.
First, by replacing a vicinity of each sliceform vertex in E(F ) with the Sliceform Gadget
(Figure 5h), we construct an extended linkage E ′(F ) that perfectly simulates E(F ) but
has no sliceforms. Then, we replace each edge of E ′(F ) with a rigidified orthogonal tree,
connected to neighboring edges with the Angle Restrictor Gadget (Figure 8), which exactly
enforces the cyclic constraint and the angle constraints.
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a1

b1

θ1

a2 b2θ2

a3

b3
θ3

a4b4 θ4

(a) The Copy Gadget forces
θ1 = · · · = θ4.

a1a2

a3 a4

b1

b2

b3

b4

θ1

θ2

θ3

θ4

(b) The Crossover Gadget
forces θ1 = θ3 and θ2 = θ4.

a1a2

a3 a4

b1

b2

b3

b4

θ1

θ2

θ3

(c) The Angle Average Gad-
get forces θ2 = (θ1 + θ3)/2.

a1a2

a3 a4

b1

b2

b3

b4

v

θ1

θ4

(d) The Start Gadget forces
v = 2r · Rect(θ4 − π

2 , θ1 − π
2 ).

a1a2

a3 a4

b1

b2

b3

b4

p

q

θ1

θ2

θ4

(e) The Vector Creation Gad-
get forces R ·Rect(θ4− π

2 , θ1−
π
2 ) = d · (eiθ2 − 1).

a1a2

a3 a4

b1

b2

b3

b4 θ4

θ3

θ1

θ2

(f) The Vector Rotation Gad-
get forces Rect(θ4 − π

2 , θ3 −
π
2 ) = i · Rect(θ1 − π

2 , θ2 − π
2 ).

a1a2

a3 a4

b1

b2

b3

b4

θ1

θ4

g

(g) The End Gadget forces
g = 0, i.e., θ1 = θ4 = π

2 .

v w1

w2

w3

w4

(h) The Sliceform gadget
keeps w1, v, w3 and w2, v, w4

collinear.

a1a2

a3 a4

b1

b2

b3

b4

θ1

θ4

g h

(i) The Crossing End Gadget
creates a crossing at g = h

when θ1 = θ4 = π
2 .

Figure 5 Gadgets used in the Main Construction. Angle chains Λ marked with a solid gray
sector have ∆(Λ) = 0; angle chains at midpoints of cell edges have ∆(Λ) = δ; and the rest have
∆(Λ) = ε unless otherwise specified. Vertices surrounded by squares are pinned, and those marked
with an “x” are sliceform vertices. The pins shown here at the vertices ai are for clarification only;
in the overall construction, these nodes are forbidden from moving by other means, so these explicit
pins are unnecessary.
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Figure 6 The Vector Average Gadget forces v2 = (v1 +
v3)/2, i.e., Rect(α2 − π

2 , β2 − π
2 ) = (Rect(α1 − π

2 , β1 − π
2 ) +

Rect(α3 − π
2 , β3 − π

2 ))/2.
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Figure 7 Computing the sum γ =
β1 +α2. Cells with “S” are start gad-
gets; those with “x” are crossover gad-
gets; and those with αj , βj , or γ are
copy gadgets.

o
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c1
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Figure 8 Angle Restrictor Gadget, L∠restrict, shown in full (left) and closeup (right).

4.3 Modifications for Strong Matchstick Universality

We may subtly modify the above proof of Theorem 2.8 to prove that the nontrivial subsets
of R2 drawn by matchstick linkages are exactly the bounded semialgebraic sets. We use
one extra cell gadget when constructing extended linkage E(F ), the Crossing End Gadget
(Figure 5i), which is used to create a crossing precisely when g(−→xy) = 0 for a given poly-
nomial g. When linkage E(F ) is simulated by a matchstick linkage M(F ) as described in
Section 3.3, all of E(F )’s noncrossing configurations transfer toM(F ), i.e., thickening does
not introduce unintended crossings. This allows us to draw semialgebraic sets of the form

{−→x ∈ Rk ∈ R2 | f1(−→x ) = · · · = fs(−→x ) = 0, g1(−→x ) 6= 0, . . . , gr(−→x ) 6= 0},

as well as coordinate projections thereof. This is sufficient to draw any bounded semialge-
braic set in the plane.
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