
Verification of Microarchitectural Refinements in
Rule-based Systems

Nirav Dave∗, Michael Katelman�, Myron King∗, Arvind∗, José Meseguer�
∗ Massachusetts Institute of Technology - Computer Science and Artificial Intelligence Laboratory

Cambridge, MA 02139, U.S.A.
{ndave, mdk, arvind}@csail.mit.edu

� University of Illinois at Urbana-Champaign - Department of Computer Science
Urbana, IL 61801, U.S.A.

{katelman, meseguer}@uiuc.edu

Abstract—Microarchitectural refinements are often required
to meet performance, area, or timing constraints when designing
complex digital systems. While refinements are often straightfor-
ward to implement, it is difficult to formally specify the conditions
of correctness for those which change cycle-level timing. As
a result, in the later stages of design only those changes are
considered that do not affect timing and whose verification can
be automated using tools for checking FSM equivalence. This
excludes an essential class of microarchitectural changes, such as
the insertion of a register in a long combinational path to meet
timing. A design methodology based on guarded atomic actions,
or rules, offers an opportunity to raise the notion of correctness
to a more abstract level. In rule-based systems, many useful
refinements can be expressed simply by breaking a single rule
into smaller rules which execute the original operation in multiple
steps. Since the smaller rule executions can be interleaved with
other rules, the verification task is to determine that no new
behaviors have been introduced. We formalize this notion of
correctness and present a tool based on SMT solvers that can
automatically prove that a refinement is correct, or provide
concrete information as to why it is not correct. With this tool, a
larger class of refinements at all stages of the design process can
be easily verified. We demonstrate the use of our tool in proving
the correctness of the refinement of a processor pipeline from
four stages to five.

I. INTRODUCTION

Modular refinement is an important technique in designing
complex digital systems because it eases architectural explo-
ration for better performance, area, and power. For modular
refinement to be viable it should be relatively easy to deter-
mine if a local change preserves the overall correctness of the
design. Generally, it is extremely difficult for a designer to give
a full formal correctness specification for a system. Specifying
correctness requires a level of knowledge of the overall system
and familiarity with formal verification methods that few
designers possess. As a consequence, common practice is to
settle for partial verification via testing. Testing works, but as
test suites tend to be built in conjunction with the design itself,
designers rarely gain sufficient confidence in their refinements’
correctness until the final stages of the design cycle.

An alternative is to restrict the types of refinements to ones
whose local correctness guarantees that the overall behavior
will remain unaffected, and designs usually rely on the notion
of equivalence supported by the design language semantics

for proving or testing local equivalence. As most hardware
description languages describe synthesizable systems at the
level of gates and wires, this amounts to FSM (finite-state
machine) equivalence. Tools usually require the designer to
specify the mapping of state elements (e.g., flip-flops), and
thus reduce the problem of FSM equivalence to combina-
tional equivalence, which can be performed efficiently. FSM-
equivalence-preserving refinements have proven to be quite
useful because tools are available to prove the local correctness
automatically and there is no negative impact on the overall
verification strategy. However, FSM refinement is too restric-
tive, disallowing many desirable changes such as adding a
buffer to cut a critical path in a pipeline. Thus these tools are
limited to verification in the later stages of design when the
timing has been decided.

Recently, languages like Bluespec [2], which describe de-
signs not as gates and wires but as a set of guarded atomic
actions (or rules) on state elements, have been proposed.
Over the last six years, it has been established that Bluespec
programs not only can produce no-compromise hardware [1],
but that keeping programs at the rule level allows more
flexibility in design and refinements [4]. For instance, the
addition of a pipeline stage can be implemented in a natural
way by splitting the rule corresponding to the appropriate
stage into multiple rules, and introducing state to hold the
intermediate results.

A Bluespec program can be reasoned about at two levels.
At the first level we deal with rules in an unscheduled manner.
The semantics state that we compute by selecting any valid
rule (i.e., one whose guard evaluates to true) for execution,
update the state by executing the body of the rule, and then
repeat the process. This means that the program is naturally
non-deterministic, and programs at this level are meant to
be correct for all possible traces of execution. At the second
level the compiler adds a scheduler which is responsible for
resolving the non-determinism so that we may synthesize
the program into a high-quality FSM implementation. The
choice of scheduler is a purely performance-based concern and
should not affect the correctness. We exploit this separation
of concerns and focus on the equivalence of systems before
scheduling.

f1 f2

r1 r2

x zy

i ≥ 0


yi = f1(xi, r1i);

r10 = 0; r1i+1 = yi;
zi = f2(yi, r2i);

r20 = 0; r2i+1 = zi;

Fig. 1. Initial FSM

Despite the guarded atomic action formalism’s deep rela-
tion to term-rewriting systems and formal proofs, little work
has been done to verify rule-based programs at anything
beyond the implementation level. The main contribution of
this paper is to define a notion of simulation between rule-
based programs and describe an SMT-based algorithm that
automatically verifies this notion of simulation. A tool based
on this algorithm is able to prove the correctness of interesting
refinements in a matter of tens of seconds, well within range
to be useful as a debugging aid for the designer. We use the
tool to show the correctness of several examples including the
refinement of a four-stage processor pipeline into a five-stage
pipeline.
Paper Organization: In Section II, we discuss the kinds of
refinements we want to make and why their correctness
cannot be formulated at the FSM level. We also discuss the
challenge of verification at the level of rules and discuss how
nondeterministic specifications affect the verification task. In
Section III, we formalize a notion of equivalence in the context
of rule refinements. In Section IV, we discuss the algorithm
used by our tool to mechanically verify equivalence using an
SMT solver. In Section V, we discuss the verification of a
processor program. In the last section we discuss related work
and present our conclusion.

II. MOTIVATING REFINEMENT EXAMPLE

To understand the challenges of refinement in rule-based
systems we must first understand how such refinements differ
from refinements of FSMs, motivating our notion of behavior
and explaining where the new method and tool are needed.

A. Refining an FSM

Consider the hardware represented by the FSM system
shown in Figure 1. The system consists of two registers r1
and r2, both initially zero, and some combinational logic
implementing functions f1 and f2. The critical path in this
system goes from r1 to r2 via f1 and f2. In order to improve
performance, a designer may want to break this path by adding
a buffer (say, a one element FIFO) on the critical path as shown
in Figure 2. Though we have not shown the circuitry to do so,
we will assume that r2 does not change and the output z is
not defined when the FIFO is empty.

In this refined system, the operation that was done in one
cycle is now done in two; f1 is evaluated in the first cycle,
and f2 in the second. The computation is fully pipelined so
that each stage is always productive (except the first cycle
of the second stage, when the FIFO buffer is empty) and we
have the same cycle-level computation rate. However the clock

f1 f2

r1 r2

x zy y’

i ≥ 0



yi = f1(xi, r1i); z0 = ⊥;
r10 = 0; r1i+1 = yi;
yp0 = ⊥; ypi+1 = ypi;
zi+1 = f2(yi+1, r2i+1);
r20 = 0; r21 = r20;

r2i+2 = zi+1;

Fig. 2. Refined FSM

period in the refined system can be much shorter, thereby
increasing system throughput. Though the cycle-by-cycle state
of the two FSMs do not match directly, a little bit of analysis
will show that the sequence of values assumed by r2 and z are
the same in both systems. In other words, the refined system
produces the same answer as the original system but one cycle
later. Therefore, in many situations such a refinement may be
considered correct even though the FSMs of the two systems
are not equivalent.

The problem here is that if we don’t rely on FSM equiv-
alence then how should we define equivalence? A solution
could be to introduce the notion of a message or valid input
and output and then define equivalence in terms of input-output
sequences of messages as opposed to cycle-by-cycle behavior
of input and output. Such a technique is not likely to work
for sub-components of a synchronous circuit. In the following
section we discuss a rule-based description of this example
and show how refinements are expressed in such systems.

B. Refinements at the Rule Level

When designers specify systems using rules, they often have
in their mind a particular datapath and FSM, although the exact
datapath and FSM is generated by the compiler. For example,
a designer may express the FSM design in Figure 1 using a
single rule as shown in Figure 3. While it is reasonable to
deal with streams of inputs in FSMs, it makes more sense in
rule-based programs to think of input and output in terms of
queues which we have added. For simplicity we can assume
that inQ is never empty and outQ is never full. If we assume
that a rule executes in one clock cycle then the rule in Figure 3
specifies that every cycle r1 and r2 should be updated, one
value should be dequeued from inQ, and one value should
be enqueued in the outQ. (The approximate logic generated
by each rule is shown as a cloud in all the figures; we have
omitted the control logic to avoid clutter.)

An execution in a rule-based program can be thought of
in terms of the sequence of values assumed by various state
elements. Assuming inQ has values x0, x1, x2, ..., we will
observe the sequence of states shown in Figure 4.

The sequences of values for r1 and r2 match exactly with
those in Figure 1. Similarly, the values on the wires x and z
which serve as input and output in the original program match
the sequence of values in inQ and outQ.

The refined FSM in Figure 2 may be described by splitting
our single rule into two rules: produce and consume, which
communicate via the FIFO q as shown in Figure 5.

produce/consume

f1 f2

r1 r2

x zy

inQ outQ

register r1 = 0, r2 = 0
fifo inQ, outQ;
rule produce_consume when (!inQ.empty() && !outQ.full()):

let x = inQ.first(); inQ.deq();
let y = f1(x,r1); let z = f2(y,r2);
r1 := y; r2 := z; outQ.enq(z);

Fig. 3. A Rule-based Specification of the Initial Program

([x0, x1, x2, ...], r10, r20, []) −→
([x1, x2, ...], r11, r21, [z1]) −→
([x2, ...], r12, r22, [z1, z2]) −→
...

where: r10 = 0; r20 = 0;
r1i+1 = f1(xi, r1i);
r2i+1 = f2(r1i+1, r2i);
zi = r2i

Fig. 4. The behavior of the program in Figure 3. State is represented by
quadruples where the first and final member are the contents of inQ and
outQ, and the second and third members are the values of r1 and r2

The first thing to understand about this two-rule program
is that it represents a nondeterministic specification which
can be implemented by many different FSMs. For multiple
rule programs, the semantics only states that any enabled
rule (i.e., a rule in a state where its guard is true) can be
executed; it does not determine which rule to choose if more
than one is enabled. The following are possible schedules for
this program:

Schedule 1 Schedule 2 Schedule 3
produce produce produce
consume produce produce
produce consume consume
consume consume produce

... ... consume

...

In the first schedule the program repeatedly enters a token
into the FIFO and then immediately takes it out. This emulates
the execution of the rule in the unrefined program (Figure 3)
and leaves the FIFO q empty after each consume rule
execution. This schedule also does the same set of updates
to registers r1 and r2 as the original program. The second
schedule repeatedly queues up two tokens before removing
them. Note that, this schedule will be valid only if q has space
for two tokens. In the third schedule, except when the program
starts, there will always be at least one token in q.

In case of multiple-rule programs, the behavior of the
program must be thought of in terms of the set of permitted
executions or more precisely, the set of the sequences of
values assumed by various state elements. A scheduler picks
a specific execution from this set. A schedule is chosen by
the compiler (with voluntary inputs from the designer) based
on some goodness criteria. The current Bluespec compiler [6]

produce consume

f1 f2

r1 r2

x zy y’

inQ

register r1 = 0, r2 = 0
fifo q, inQ, outQ
rule produce when (!q.full() && !inQ.empty()):
let x = inQ.first(); inQ.deq();
let y = f1(r1,x);
q.enq(y); r1 := y

rule consume when (!q.empty() && !outQ.full()):
let y = q.first; q.deq();
let z = f2(y,r2);
outQ.enq(z); r2 := z;

Fig. 5. A Refinement of the Program in Figure 3

schedules as many enabled rules as possible every cycle as
long as the rules do not conflict with each other. The behavior
produced by a parallel scheduler must be consistent with
some one-rule-at-time schedule. For the example at hand the
Bluespec compiler will schedule only the producer in the
first cycle and then repeatedly schedule consumer followed by
producer in the each subsequent cycle. If the compiler is im-
plemented correctly, parallel scheduling cannot introduce any
new behaviors by definition. Thus, for verification purposes we
only have to consider executions caused by one-rule-at-time
schedulers.

How should we compare the behaviors of our original
program (Figure 3) and the refined program (Figure 5) since
they have different sets of state elements? Both programs
have r1 and r2 but in the two programs they get updated
at different times and may not match. Intuitively we know
that if q contains an element, then we are part way through at
least one round of an equivalent produce_consume atomic
computation and r1 and r2 will appear out of sync in the two
programs. Conversely, whenever q is empty we should be able
to draw a correspondence between the executions of the two
programs.

We can guarantee that the refined program does not add new
behaviors if we can show that for any execution in the refined
program, whenever it reaches a state where q is empty we can
find a corresponding execution in the original program which
has the same values for the matching state elements, i.e., r1
and r2. To guarantee that we haven’t lost behaviors we must
also show the converse: namely that any computation in the
original program can be mimicked by the refined program.
This is quite easy to show because produce followed by
consume behaves exactly as produce_consume.

We first offer an intuitive reason why the original program
can mimic the refined one). Consider those prefixes of a
schedule in the refined program which have equal number of
produce and consume rule executions. At the end of such
a prefix, q must be empty. Further, since produce always

produce/consume/observe

f1 f2

r1 r2

x zy

inQ outQ

obsQ

f3

register r1 = 0, r2 = 0
fifo inQ, outQ, obsQ;
rule produce_consume_observe when (!inQ.empty()

&& !outQ.full() && !obsQ.full()):
let x = inQ.first(); inQ.deq();
let y = f1(x,r1); let z = f2(y,r2);
let a = f3(r1,r2);
r1 := y; r2 := z;
outQ.enq(z); obsQ.enq(a);

Fig. 6. Program of Figure 3 with an Observer

adds a token and consume always removes one, we must
have a non-empty q when we have an unequal number of
produces and consumes. However, in any state where q
is non-empty, we can always execute an appropriate number
of consumes to make the q is empty. Given this, all we
must show is that 1) for all prefixes with an equal number of
produce and consume rule executions, we can match r1
and r2 with a computation in the original program, and 2) for
all other sequences we can take them to a state where the q
is empty.

C. An Example to Illustrate Incorrect Refinements

While refinements are often easy to implement, it is not
uncommon for a designer to make subtle mistakes. Consider
the original one-rule produce-consume example augmented
with observation logic as shown in Figure 6. In addition
to doing the original computation, this program computes a
function of the state of r1 and r2, and at each iteration inserts
the result into a new FIFO queue(obsQ). A designer may want
to do the same rule splitting exercise he had done with the first
program, leading to the program in Figure 7.

This refinement is clearly wrong; we can observe r1 and r2
out-of-sync via the new observer circuit. Thus, the sequence
produce observe consume has no correspondence in
the original program. For our tool to be useful to a designer,
it must be able to correctly determine that this refinement is
incorrect (or rather that it failed to find a matching behavior
in the original program). A correct refinement is shown in
Figure 8, where extra queues have been introduced to keep
relevant values in sync. The correct solution would be obvious
to an experienced hardware designer because all paths in a
pipeline have the same number of stages.

D. Refinements in Nondeterministic Programs

The examples that we have considered so far have started
with a single rule program. Such programs by definition

consumeproduce

observe

f1 f2

r1 r2

x zy

inQ outQ

obsQ

f3

register r1 = 0, r2 = 0
fifo q, q1, inQ, outQ, obsQ
rule produce when (!q.full()):
let x = inQ.first(); inQ.deq();
let y = f1(r1,x);
q.enq(y); r1 := y

rule consume when (!q.empty()):
let y = q.first(); q.deq();
let z = f2(y,r2);
outQ.enq(z); r2 := z;

rule observe when (!obsQ.full()):
let a = f3(r1, r2); obsQ.enq(a);

Fig. 7. An incorrect refinement of the program in Figure 6

consumeproduce

observe

f1 f2

r1 r2

x zy

inQ outQ

obsQ

f3

register r1 = 0, r2 = 0
fifo inQ, outQ, obsQ, r1Q, r2Q, q;
rule produce when (!inQ.empty() && !r1Q.full()

&& !q.full()):
let x = inQ.first(); inQ.deq();
let y = f1(r1,x);
r1Q.enq(r1); q.enq(y); r1 := y;

rule consume when (!q.empty() && !r2Q.full()
&& !outQ.full()):

let y = q.first(); q.deq();
let z = f2(y,r2);
r2Q.enq(r2);
outQ.enq(z); r2 := z;

rule observe when (!obsQ.full() && !r1Q.empty()
&& !r2Q.empty()):

let x = f3(r1Q.first(),r2Q.first());
r1Q.deq(); r2Q.deq(); obsQ.enq(x);

Fig. 8. A correct refinement of the program in Figure 6

produce deterministic behaviors. Much of the value of rule-
based programs comes from the ability to specify programs
which can have multiple distinct behaviors. An example of
a useful nondeterministic specification is that of a speculative
processor whose correctness does not depend upon the number
of instructions which are executed on the incorrect path. What
does it mean to do a refinement in such a program?

Consider the example in Figure 9, which is a variation of
our producer-consumer example with an observer (Figure 6).
Unlike the lockstep version which did one observation for each
iteration, in this program we are allowed to not only miss some
updates of r1 and r2, but are permitted to repeatedly make
the same observations. An implementation, i.e., a particular

observe

produce/consume

f1 f2

r1 r2

x zy

inQ outQ

obsQ

f3

register r1 = 0, r2 = 0
fifo inQ, outQ, obsQ;
rule produce_consume when (!inQ.empty() && !outQ.full()):

let x = inQ.first(); inQ.deq();
let y = f1(x,r1); let z = f2(y,r2);
r1 := y; r2 := z; outQ.enq(z);

rule observe when (!obsQ.full()):
let x = f3(r1,r2); obsQ.enq(x);

Fig. 9. A program with a nondeterministic observer

schedule, of this rule-based specification would pick some
deterministic sequence of observations from the allowed set.
By giving such a specification, the designer is saying, in effect,
that any schedule of observations is acceptable. In that sense,
the observations made in the program in Figure 6 are an
acceptable implementation of this nondeterministic program.
By the same reasoning we could argue that the refinement
shown in Figure 8 is a correct refinement of Figure 9.

But suppose we did not want to rule out any behaviors
prematurely in our refinements, then a correct refinement will
have to preserve all possible behaviors. We show a correct
refinement of the nondeterministic program in Figure 10,
where we introduce an extra register, r1p, to keep a relevant
copy of r1 in sync with r2 with which to make legal
observations.

It is nontrivial to show that all behaviors in the new
program can be modeled by the original nondeterministic
specification and vice versa. As we demonstrate later, our
tool can automatically verify this condition, though we do
require the programmer to specify a projection function, by
which state in the two different programs can be related. The
partial function relationship is both natural for designers to
come up with and easy to specify. Having manually defined
this function, the designer passes it to the tool which tells him
either that the refinement is correct, or if it is not, returns an
execution from one program which can not be simulated by
the other.

III. FORMALIZING BEHAVIORS AND CORRECTNESS OF
REFINEMENTS

We model the behavior of a program using a state transition
system. A program P has a collection of state elements and
a set of rules RP . The states in the transition system are
the values assumed by these state elements. Thus, the state
transition system of a program with 2 32-bit registers would
have 264 states.

consumeproduce

observe

f1 f2

r1 r2

x zy

inQ outQ

obsQ

f3

r1p

y’

register r1 = 0, r2 = 0, r1p = 0
fifo inQ, outQ, q, obsQ
rule produce when (!q.full()):
let x = inQ.first(); inQ.deq();
let y = f1(x,r1);
r1 := y; q.enq(y);

rule consume when (!q.empty()):
let x = q.first(); q.deq();
let z = f2(x,r2);
r1p := x; r2 := z; outQ.enq(z);

rule observe when (!obsQ.full())
let x = f3(r1p, r2); obsQ.enq(x);

Fig. 10. Correct refinement of Figure 9

A. Equivalence of Programs

Definition 1 (State Transition System of Program PS).
A program PS is modeled by a state transition system S,
represented as a tuple:

S = (S, S0,−→S ,�S)

where S is the set of states; S0 ⊆ S is the set of states
corresponding to initial configurations of P ; −→S⊆ S × S
is the transition relation where (s, s′) ∈−→S if and only if
there exists some rule R in P whose execution takes the state
s to s′; and �S is the reflexive, transitive closure of relation
−→S . �

It is sometimes useful to know which rule R caused the
transition from s to s′; we will denote this by writing:

s
R−−→ s′

Similarly we write the sequence of rule executions σ =
R1, R2, ...Rn where:

s0
R1−−−→ s1

R2−−−→ s2... Rn−−−→ sn

as:

s0
σ
� sn

Intuitively two programs P1 and P2 with the same set of
states are equivalent if every transition in one system can be
modeled by the other. That is, every finite execution s � s′

in P1 has a corresponding execution s � s′ in P2 and vice
versa.

Definition 2 (Equivalence of Programs). Two programs
PS and PS′ modeled by state transition systems
S = (S, S0,−→S ,�S) and S ′ = (S′, S′0,−→S′ ,�S′)
are equivalent if:

(S = S′) ∧ (S0 = S′0) ∧ (�S=�S′) �

This definition captures the fact that two program may have
a different set of rules but may still be equivalent in terms of
their transitive closure. This ability allows us to add “derived”
rules whose execution is always expressible in terms of the
other rules in the program without affecting the meaning of
the program.

Modeling the behavior of a program in terms of the tran-
sitive closure of executions also allows us to define several
other notions precisely:

Definition 3 (Deterministic Programs). A program PS is
deterministic if all pair-wise executions are confluent, that is:
((s0 �S s1)∧ (s0 �S s2)) =⇒ ∃s3.((s1 �S s3)∧ (s2 �S
s3)).
A program is called non-deterministic if it is not a
deterministic program. �

Examples of nondeterministic programs are shown in Fig-
ures 7, 9, and 10. All other examples given in Section II are
deterministic by this definition.

As we have shown, implementing a rule-based program
requires choosing a schedule. A scheduler by definition im-
plements a specific execution sequence. Thus, in the case of
non-deterministic programs the scheduler eliminates all non-
determinism and produces one specific behavior among the
allowed set of behaviors. Even for deterministic programs
the scheduler is sometimes not able to produce a “complete”
behavior because of unfair scheduling of rules. In such cases
we say that an implementation is partially correct:

Definition 4 (Partially Correct Implementation). Program
PS′ modelled by S ′ = (S′, S′0,−→S′ ,�S′) is a partially
correct implementation of PS , modelled by S = (S, S0,−→S
,�S) when:

(S = S′) ∧ (S0 = S′0) ∧ (�S′⊆�S)

B. Correctness of Refinements

The correctness is slightly more complicated to define for
the refinements we described in the previous section. To begin
with, the state elements of the specification program are a
proper subset of the state elements in the implementation
program (we refer to the “refined” program as an implemen-
tation). In addition, the set of rules in the implementation is
formed by removing a rule from the specification rule set,
replacing it by two rules (which together simulate the removed
rule) that operate on the new implementation state, and lifting
the remaining rules to operate in the implementation state.
This is clearly more complicated than the simple addition of
a derived rule described in the previous section.

To reason about the correctness of refinement, we need a
projection function to relate implementation state to specifi-
cation state. This projection function is necessarily partial.
Alternatively, we could employ a lifting function to map
specification state to implementation state. This lifting function
is necessarily total. The partial projection function must be

a retraction (left inverse) of the lifting function. The states
which are in the domain of the projection function are called
relatable.

Consider the transitive reflexive closure of the transition
relation �T of the implementation, from which all nodes
(and associated edges) corresponding to states for which the
projection function is undefined have been removed. The
resulting graph should be identical to �S if the refinement
is correct. (In cases where the projection function associates
multiple states in the implementation with a single state in the
specification some merging of the states must happen for the
relations to be identical.)

However, there is one small complication with the intuition
presented above: The fact that the lifted specification graph
and reduced implementation graph are identical implies only
the existence of a path in the implementation graph which
corresponds to every path in the specification graph. This
condition covers all finite executions in the implementation
program which start and end in relatable states, but not those
which start in a relatable state but do not end in one. To address
those executions, we must verify that every finite execution
in the implementation beginning in a relatable state which
does not end in a relatable state, can eventually reach one. In
concrete terms, this corresponds to the option to empty the
FIFO in the refinement presented in Figure 5.

Definition 5 (A Correct Refinement). The refined program
PT modeled by T = (T, T0,−→T ,�T) is a correct refine-
ment of the program PS modeled by S = (S, S0,−→S ,�S)
given lifting function L : S −→ T relating the states when
the following conditions hold:

1) Soundness:
∀t1, t2 ∈ T, s1, s2 ∈ S.
((L(s1) = t1) ∧ (L(s2) = t2) ∧ (t1 �T t2))

=⇒ (s1 �S s2)

2) Limited Divergence:
∀t0 ∈ T0, t1 ∈ T.(t0 �T t1)

=⇒ ∃s ∈ S.(t1 �T L(s)) �

The first clause states that every possible execution in
the implementation whose starting and ending states have
corresponding states in the specification must have a corre-
sponding execution in the specification. The second clause
states that from any reachable state in the implementation we
can always get back to a state which corresponds to a state in
the specification. Note that these cases alone do not guarantee
that the specification has been fully implemented. To guarantee
that a specification has been fully implemented, we need the
notion of total correctness.

Definition 6 (A Totally Correct Refinement). A totally
correct refinement is a correct refinement which meets the
additional conditions:

1) T0 = {L(s)|s ∈ S0}

2) ∀s1, s2 ∈ S.(s1 �S s2) =⇒ (L(s1) �T L(s2)) �

The first clause merely says that our initial states directly
correspond with each other. The second clause states that all
executions in the specification program is preserved in the
implementation. The conditions for total correctness are quite
easy to verify.

IV. CHECKING SIMULATION USING SMT SOLVERS

We can understand the execution of rule R as the application
of a pure function fR of type S −→ S to the current
state. When the guard of R fails, it causes no state change
(i.e., fR(s) = s). We can compose these functions to generate
a function fσ corresponding to a sequence of rules σ. To prove
the correctness of refinements, we pose queries about fσ to
an SMT solver.

SMT solvers are conceptually Boolean Satisfiability (SAT)
solvers extended to allow predicates relating to non-boolean
domains (characterized by the particular theories it imple-
ments). SMT solvers do not directly reason about computation,
but rather permit assertions about the input and output relation
of functions. They provide concrete counter-examples when
the assertion is false. For example, suppose we wish to verify
that some concrete function f behaves as the identity function.
We can formulate a universal quantification representing the
property: ∀x, y.(x = f(y))∧ (x = y). An SMT solver can be
used to solve this query, provided the domains of x and y are
finite, and f is expressed in terms of boolean variables. If the
SMT solver can find a counter-example, then the property is
false. If not, then we are assured that f must be the identity.
The speed of SMT solvers on large domains is due to their
ability to exploit symmetries in the search space [3].

When we reason about rule execution it is often useful to
discard all executions where a rule produces no state update
(a degenerate execution); it is clearly equivalent to the same
execution with that rule removed. As such, when posing
questions to the solver it is useful to add clauses which state
that sequential states of an execution are different. To represent
this assertion for the rule R, we define the predicate function
f̂R(s2, s1) which asserts that the guard of rule R evaluates to
true in s1 and that s2 is the updated state:
f̂R(s2, s1) = (s2 = fR(s1)) ∧ (s2 6= s1)

As with the functions, we can construct larger predicate
f̂σ(s2, s1) which is true when a non-degenerate execution of
σ takes us from s1 to s2.

Now we will explain how the propositions in Definition 5
can be turned into a small set of easily answerable SMT
queries.

A. Checking Correctness

For this discussion let us assume we have a specification
program PS and a refinement PT . Their respective transition
systems S = (S, S0,−→S ,�S) and T = (T, T0,−→T ,�T)
are related by the lifting function L : S −→ T .

Now let’s consider the soundness proposition from Defini-
tion 5:

∀t1, t2 ∈ T, s1, s2 ∈ S.
((L(s1) = t1) ∧ (L(s2) = t2) ∧ (t1 �T t2))

=⇒ (s1 �S s2)

A naı̈ve approach to verifying this property entails explicitly
enumerating all pairs (t1, t2) in the relation �T and checking
for a corresponding pair (s1, s2) in the relation �S . As the
set of states in both system are finite, both of these relations
are similarly finite (bounded by |T |2 and |S|2, respectively)
and thus we can mechanically check the implication.

We can substantially reduce this work by noticing two facts.
First, because of transitivity, if we have already checked the
correctness of t1

σ1

�T t2 and t2
σ2

�T t3, then there is no need
to check the correctness of execution σ = σ2σ1. Second, if
have already found an execution σ such that t

σ
�T t′ then we

can ignore all other executions σ′ 6= σ which have the same
starting and ending states as they must also be correct. This
essentially reduces the task from checking the entire transitive
closure to checking only a covering of it. Unfortunately, the
size of this covering is still very large.

The insight on which our algorithm is built is that proving
this property for a small set of finite rule sequences is
tantamount to proving the property for any execution. We
explain this idea using the program in Figure 5.

• Let’s begin by considering all rule sequences of length
one: produce and consume.

• The sequence consume is never valid for execution
starting in a relatable state so we need not consider it
further.

• The sequence produce is valid to execute but does
not take us to a relatable state, so we construct more
sequences by extending it with each rule in the implemen-
tation. These new sequences are produce produce
and produce consume.

• The sequence produce consume always takes a re-
latable state to another relatable state. We check that
all concrete executions of produce consume have
a corresponding execution in the specification. We do
this check over a finite set of sequences in S (in this
case: produce_consume), the selection of which we
will explain later. Since all executions of produce
consume take us to a relatable state, we need not extend
it.

• produce produce never takes us from relatable state
to relatable state, so again extend the sequence to
get new sequences produce produce produce and
produce produce consume.

• produce produce produce is degenerate if q is of
length 2 (q has to have some known finite length).

• Suppose we could prove that the sequence produce
produce consume always behaves like produce
consume produce. Then any execution prefixed by
produce produce consume is equal to an execu-
tion prefixed by produce consume produce. No-
tice, that we need not consider any sequences prefixed
by produce consume produce because itself has
the prefixed produce consume. Therefore we need

not consider further sequences prefixed by produce
produce consume.

• Because we have no new extension to consider, we have
proved the correctness of this refinement.

Each of these steps involved an invocation of the SMT
solver on queries which are much simpler than the general
query presented previously, though the solver still must con-
ceptually traverse the entire state space. The queries them-
selves are simple because they are always presented using rule
sequences of concrete length, which are much smaller than
the sequences in �T . The only problem with this procedure
is that in the worst case this algorithm will run for the
maximum number of states in S. If we give up before the
correctly terminating condition, this only means we have failed
to establish the correctness of the refinement. We think it is
unlikely that the type of refinements we consider in this paper
will enter this case. In fact most refinements can be shown to
be correct with very small number of considered sequences.

B. The Algorithm

The algorithm constructs three sets, each of whose elements
corresponds to a set of finite executions of T . For each
iteration, Rσ represents the set of finite sequences for which
we have explicitly found a corresponding member, and U
represents the set of finite executions we have yet to verify
(each element of U conceptually represents all finite sequences
starting with some concrete sequence of rule executions σ).
NU is the new value of U being constructed for the next
iteration of the execution.

The Verification Algorithm:
Initially:
• Rσ := ∅
• U := {Ri|Ri ∈ RPT }
• NU := ∅

1) if U = ∅, we have verified all finite executions. Exit with
Success.

2) Check if we have reached our iteration limit. If so, give
up, citing the current U set as the cause of the uncertainty.

3) For each σ ∈ U :
a) Check if the execution of σ from a relatable state is

ever non-degenerate:
(∃s1 ∈ S, t2 ∈ T.(L(s1)

σ
�T t2)

If no execution exists we can stop considering σ
immediately.

b) Check if σ should be added to Rσ . That is, that some
execution of σ should have a correspondence in S:
∃s, s′ ∈ S.(L(s)

σ
�T L(s′))

If so Rσ := Rσ ∪ {σ}.
c) Check if all finite executions of σ that should have a

correspondence in S have such a correspondence:

∀s, s′ ∈ S.(L(s)
σ

�T L(s′)) =⇒ ∃σ′.(s
σ′

�S s′)
If this fails due to some concrete execution of σ,
exit with Failure providing the counter example as
justification.

d) For every execution where σ does not put us in a
relatable state, we must show that extensions of the
form σσ′ have an equivalent execution σ1σ2σ′, where
σ1 is a member of Rσ and |σ1σ2| ≤ |σ|. Thus, the
correctness of σσ′ is reduced to the correctness of the
shorter sequence σ2σ′.
∀s ∈ S, t ∈ T.(L(s)

σ
�T t)

=⇒ ∃σ1 ∈ Rσ, σ2, s′ ∈ S.
(|σ1σ2| ≤ |σ|) ∧ (L(s′) = σ1(L(s)))
∧ (σ2(L(s

′)) = t).
If this succeeds, we need not consider executions for
which σ is a prefix. If not, partition all the extensions
into the |RP | sets of rules by extending σ by one rule
execution. NU := NU ∪ {σ.Ri|Ri ∈ RPT }.

4) U := NU . NU := ∅. Go to Step 1.

C. Formulating the SMT Queries
The four conditions in the inner-most loop of the algorithm

can be formulated as the following SMT queries using the f̂σ
predicate and the lifting function L:

1) Existence of valid execution of σ starting from a relatable
state:
∃s1 ∈ S, t2 ∈ T.f̂σ(t2, L(s1))

2) Verifying that each execution of σ in the implementation
starting and ending in a relatable state has a correspond-
ing execution in the specification:
∀s1, s2 ∈ S, t1, t2 ∈ T.
(L(s1) = t1) ∧ (L(s2) = t2) ∧ f̂σ(t2, t1) =⇒∨

σ′∈EC(σ)(f̂σ′(s2, s1))
where EC is the “expected correspondences” function
which takes a sequences of rules σ in T and returns
a finite set of sequences in S to which σ is likely
to correspond. This function can be easily generated
by the tool or the user, since given the refinements
are rule splitting, it is easy to predict the candidates
in the specification that could possible mimic σ. For
instance, consider the refinement of the program in
Figure 3 to the one in Figure 5. Each occurrence of
produce in the implementation should correspond to an
occurrence of produce_consume in the specification.
Thus, the sequence produce produce consume
produce, if it has a correspondence at all, could
only correspond to the sequence produce_consume
produce_consume produce_consume.

3) Checking that every valid execution of σ in the imple-
mentation has an equivalent sequence which is correct
by concatenation of smaller sequences:
∀t1, t2, tm ∈ T, s1, sm ∈ S.
(L(s1) = t1) ∧ f̂σ(t2, t1) =⇒ (L(sm) = tm) ∧∨

σ1∈Rσ (
∨
σ2∈EA(σ,σ1)

(f̂σ1
(tm, t1) ∧ f̂σ2

(t2, tm)))
Our algorithm requires us to find, given σ and σ1 in T ,
a σ2 such that the execution of σ is the same as the
execution of σ1σ2, and |σ1|+ |σ2| ≤ |σ|. We will assume
the existence of a “expected alternatives” function EA
which enumerates all possible values of σ2 given σ and
σ1.

D. Step-By-Step Demonstration
Figure 11 gives the traces of reasoning through which

our algorithm progresses in order to verify three distinct
refinements, all of which were presented in Section II. Each
node represents an element in the set U , and the path from the
root to any node in the graph corresponds to the concrete value
σ for that node. At each node, we verify the correctness of all
corresponding finite executions of σ: nodes displayed as ⊥ are
vacuously true by Step 3a, while other leaf nodes are either
true by Step 3d or incorrect by Step 3c. In this section, we
attempt to give the reader further intuition about the algorithm
through a discussion of one of these traces.

The leftmost trace corresponds to the steps required to check
the refinement of the design in Figure 3 to the design in
Figure 5. Since this refinement has been discussed extensively,
we provide no further explanation. The graph in the center
corresponds to the refinement of the design in Figure 6 to the
one in Figure 7 and provides a valuable illustration of how
the algorithm rejects an incorrect refinement:
• We begin by considering all rule sequences of length

one executed in a relatable state: produce, consume,
and observe. The rule observe always ends in a
relatable state, and corresponds directly to the observe
rule in the specification program. consume is never valid
to execute, so the only sequence which we extend is
produce since it never ends in a relatable state.

• We now extend produce, giving us three new
sequences to consider: produce produce, produce
consume, and produce observe. produce
consume always ends in a relatable state and
corresponds to the execution of produce_consume
in the specification. Neither produce produce, nor
produce observe ever end in a relatable state, and
since we are unable to prove their equivalence to an
execution we have already verified, we extend both.

• In the third iteration, we consider the sequence produce
observe consume, which always ends in a relatable
state. This exposes an error in the refinement since there
is no possible sequence of rule in the specification which
produces this final state (in this case, the implementation
enqueues a value to obsQ which the specification is
unable to replicate.

V. THE DEBUGGING TOOL AND EVALUATION

We use the symbolic algorithm as the basis for a single-
threaded Haskell implementation. Our tool accepts both the
reference and refined implementations as post-elaborated
Bluespec SystemVerilog. It then generates the queries specified
in Section IV as boolean propositions over bitvectors, and
passes them to the STP solver [5]. To improve efficiency, we
exploit simple path rewriting analysis to avoid invoking the
SMT solver for trivial cases. For instance, with the program
in Figure 10, we establish that produce observe is always
observe produce, thus handling the P3 and P6 sequences
of the rightmost graph in Figure 11 without additional SMT
queries.

Exec Mem

iMem

rf

pc

dMem

Write-
back

Fetch/
Decode

(a) 4 stage SMIPS Processor

Exec Mem

iMem

rfpc

dMem

Write-
backFetch Decode

(b) 5 stage SMIPS Processor

Fig. 12. SMIPS processor refinement

To demonstrate our tool, we consider the refinement of a
Simplified MIPS (SMIPS) processor, whose ISA contains a
representative subset of 35 instructions from MIPS. While
the ISA semantics are specified one instruction at a time, our
program is pipelined with five stages in the style of the DLX
processor [9], and resembles soft-cores used in many FPGA
designs. The execution of the final implementation is split into
the following five separate stages (see Figure 12(b)):

1) Fetch requests the next instruction from the instruction
memory (imem) based on the pc register which it then
updates speculatively to the next consecutive pc.

2) Decode takes the data from the instruction memory and
fetch stage, decodes the instruction, and passes it along to
the execute stage. It also reads the appropriate locations
in the register file rf, stalling to avoid data hazards (stall
logic is not shown).

3) Execute removes decoded instructions from the execute
queue, executing the ALU instructions and translating ad-
dresses for memory instructions. When resolving branch
instructions, mispredicted instructions are killed and pc
is set.

4) Memory performs reads and writes to the data mem-
ory, passing the data to the writeback state. (A further
refinement might introduce a more realistic split-phase
memory, which would move some of this functionality
into the writeback stage).

5) Writeback gets instructions in the form of register des-
tination and value pairs, performing the update on the
register file.

We implement this program using one rule per stage, and
stages communicate via FIFO connections. If we choose to
execute the rules for each stage in reverse order (starting
from writeback and finishing with fetch), then we get a
fully pipelined system. If we implement each FIFO with a
single, this is indistinguishable from the standard processor
complete with pipeline stalls. If instead we execute the rules
in pipeline order, we end up with a system where the in-
structions fly through the processor one-at-a-time. For code
simplicity, our final implementation actually decomposes the
execute stage into three mutually exclusive cases, implement-
ing each with a separate rule(exec, exec_branch, and
exec_branch_mispredict). Since the rule guards are
mutually exclusive, this does not modify the pipeline structure,
nor does it change analysis.

Our implementation is relatively complicated and we would
like to know if it matches the ISA. One way to do achieve
this is to start with a single-rule description of the behavior
(transliterated directly from the documentation, which we

p
p
c

c
p
c

P2

P3P0

P1 P4

⊥

⊥

o p

p

c
p
o o

c c
P2 P3P0

P1
P6

P7

P4

P5
P8

⊥

...

...

...
o o
p
c

p
o

p
c c
P2

P3

P0

P1 P6

P7

P4

P5

⊥

⊥

Fig. 11. Tree visualizations of the algorithmic steps to check the refinements from Figures 3 to 5, 6 to 7, and 9 to 10 (from left to right)

consider to be correct), and incrementally refine the program
towards the final five-stage implementation. After each re-
finement, our tool can be used to verify correctness with
regards to the previous iteration. For the sake of brevity, we
examine only the final refinement, which takes a four-stage
processor (Figure 12(a)) and splits the fetch-decode stage.
Though the transformation is straightforward, the tool must
be able to correctly resolve the effect of speculative execution
from branch prediction.

The tool is able to establish strict stuttering simulation
of this 7 rule program by the original 6 rule program in
under 7 minutes. To do so it needed to check 21 execu-
tions in the refined program of maximum length 3, find-
ing correspondences in the four-stage program for the 5
corresponding rules, fetch_decode for fetch decode,
and exec_branch_mispredict for the mispeculating se-
quences fetch exec_branch_mispredict and fetch
fetch exec_branch_mispredict.

VI. DISCUSSION

This paper discusses the correctness of refinements for
rule-based programs general enough to allow a number of
microarchitectural techniques, like pipelining and speculation.
These notions are closely related to the the well-known notions
of simulation and bisimulation (see, e.g., [8]) and stuttering
simulation (see, e.g., [7]).

This exact notion of correct refinement intended by a
designer that the user wants is naturally and succinctly rep-
resented in our tool by a function. The tool is then able
to establish the correctness of the refinement, returning a
possible non-corresponding match in a short time. This makes
it a viable candidate for designers to use to explore their
refinements.

Though the execution time for our realistic example is
still larger than one would want in the design cycle, there is
substantial room for improvement to the current implementa-
tion. Most obviously the algorithm is highly parallelizable and
would benefit from multicores. Furthermore, there are substan-
tial inefficiencies from the file-level interaction with the SMT
solver. More than half of compute time comes from marshaling
and unmarshaling the representation. Not only would direct
software hooks cut this time substantially, but they would
also enable incremental construction of SMT queries, which
would further reduce redundancy. Finally, improvements in
SMT efficiency could be garnered by exploiting more theories
beyond those of bitvectors, especially those of uninterpreted
functions, FIFOs, and arrays. With these additions, we are

confident that this tool can help shape how designers approach
their work and encourage further formal reasoning in design.

ACKNOWLEDGMENTS

This work has been supported by the National Science
Foundation (#CCF-0541164).

REFERENCES

[1] Arvind, Rishiyur S. Nikhil, Daniel L. Rosenband, and Nirav Dave. High-
level Synthesis: An Essential Ingredient for Designing Complex ASICs.
In Proceedings of ICCAD’04, San Jose, CA, 2004.

[2] Bluespec, Inc., Waltham, MA. Bluespec SystemVerilog Version 3.8
Reference Guide, November 2004.

[3] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the third annual ACM symposium on Theory of computing,
STOC ’71, pages 151–158, New York, NY, USA, 1971. ACM.

[4] Kermin Fleming, Chun-Chieh Lin, Nirav Dave, Gopal Raghavan, Jamey
Hicks, and Arvind. H.264 decoder: A case study in multiple design
points. In In Proceedings of Formal Methods and Models for Codesign
(MEMOCODE 2008), Anaheim, CA, USA, June 2008.

[5] Vijay Ganesh and David L. Dill. A Decision Procedure for Bit-Vectors
and Arrays. In 19th International Conference on Computer Aided
Verification (CAV-07), volume 4590, pages 519–531, 2007.

[6] James C. Hoe and Arvind. Operation-Centric Hardware Description
and Synthesis. IEEE TRANSACTIONS on Computer-Aided Design of
Integrated Circuits and Systems, 23(9), September 2004.

[7] P. Manolios. A compositional theory of refinement for branching time.
In CHARME 2003, volume 2860 of Lecture Notes in Computer Science,
pages 304–318. Springer, 2003.

[8] K. S. Namjoshi. A simple characterization of stuttering bisimulation. In
FSTTCS’97, volume 1346 of Lecture Notes in Computer Science, pages
284–296. Springer, 1997.

[9] David A. Patterson and John L. Hennessy. Computer Organization
& Design: The Hardware/Software Interface, Second Edition. Morgan
Kaufmann, 1997.

