
Multi-Robot Grasp Planning for Sequential Assembly Operations

Mehmet Dogar and Andrew Spielberg and Stuart Baker and Daniela Rus

Abstract— This paper addresses the problem of finding robot
configurations to grasp assembly parts during a sequence of
collaborative assembly operations. We formulate the search for
such configurations as a constraint satisfaction problem (CSP).
Collision constraints in an operation and transfer constraints
between operations determine the sets of feasible robot config-
urations. We show that solving the connected constraint graph
with off-the-shelf CSP algorithms can quickly become infeasible
even for a few sequential assembly operations. We present an
algorithm which, through the assumption of feasible regrasps,
divides the CSP into independent smaller problems that can be
solved exponentially faster. The algorithm then uses local search
techniques to improve this solution by removing a gradually
increasing number of regrasps from the plan. The algorithm
enables the user to stop the planner anytime and use the current
best plan if the cost of removing regrasps from the plan exceeds
the cost of executing those regrasps. We present simulation
experiments to compare our algorithm’s performance to a naive
algorithm which directly solves the connected constraint graph.
We also present a real robot system which uses the output of
our planner to grasp and bring parts together in assembly
configurations.

I. INTRODUCTION
We are interested in multi-robot systems which can per-

form sequences of assembly operations to build complex
structures. Each assembly operation in the sequence requires
multiple robots to grasp multiple parts and bring them
together in space in specific relative poses. We present an
example in Fig. 1 where a team of robots assemble chair
parts by attaching them to each other with a fastener. Once an
assembly operation is complete, the semi-assembled structure
can be transferred to subsequent assembly operations to be
combined with even more parts. We present an example
sequence in Fig. 2.

This paper addresses the problem of finding robot base and
arm configurations which grasp the assembly parts during a
sequence of assembly operations.

The problem imposes a variety of constraints on the robot
configurations. Take the assembly operation scene in Fig. 1.
We immediately see one type of constraint: the robot bodies
must not intersect. In effect, they must “share” the free space.
The sequential nature of the task, however, may result in even
more constraints. A robot may choose one of two strategies
to move a semi-assembled structure from one assembly op-
eration to the next (Fig. 2): The robot can regrasp, changing
its grasp on the semi-assembled structure, or the robot can
transfer the semi-assembled structure directly to the next
operation, keeping the same grasp.

This work was supported by the Boeing Company.
Computer Science and Artificial Intelligence Lab, Mas-

sachusetts Institute of Technology, Cambridge, MA 02139 USA
{mdogar,aespielberg,spbaker,rus}@csail.mit.edu

Fig. 1: Three robots grasping parts at a specific assembly
configuration while avoiding collision.

Both strategies have their advantages. If the robot chooses
transfer, it avoids extra regrasp operations during execution.
Regrasps, on the other hand, make the planning problem
easier by decoupling sequence of operations from each other:
In Fig. 2, since the robot commits to transfer the structure
between assembly operations 1 & 2, it must plan a grasp
of the part which works for both operations. The coupling
between multiple operations makes it extremely expensive to
solve problems with long sequences of assembly operations

Humans use a combination of both strategies during
manipulation: we regrasp when we need to, but we are
also able to use transfer grasps which work for more than
one operation. Given a sequence of assembly operations,
how can a team of robots decide when to regrasp and
when to transfer? We present a planner with this capability:
Our algorithm trades off between regrasps and transfers
while generating collision-free robot configurations for each
assembly operation.

We formulate multi-robot grasp planning as a constraint
satisfaction problem (CSP). In this representation every
robotic grasp in every assembly operation becomes a vari-
able. Every variable must be assigned a robot configuration
which grasps a particular part or semi-assembled structure.
We impose two types of constraints: collision constraints be-
tween variables of the same assembly operation; and transfer
constraints between variables in subsequent operations.

Ideally, a plan involves no regrasps and the assembly is
transferred between operations smoothly. Trying to find a
plan with no regrasps, however, means having transfer con-
straints between all operations. A complete solution requires



Transfer RegraspAssembly operation 1 Assembly operation 2 Assembly operation 3

Fig. 2: Sequential assembly operations for of a chair.

solving for all the assembly operations at once. In general,
complete CSP solvers display exponential complexity with
respect to the number of variables [1]. Solving the multi-
robot grasp planning problem then becomes exponentially
expensive with increasing number of assembly operations.

Instead, our algorithm starts with a strategy to perform
regrasps between all operations. Our key assumption is that,
regrasps between any two grasps (possibly through a series
of intermediate grasps) are always feasible. This decouples
assembly operations from each other. The resulting problem
can be solved by solving a small CSP separately for each
assembly operation.

After finding this initial solution, our algorithm continues
to find solutions with fewer regrasps by imposing sets of
transfer constraints. As such solutions are found, the algo-
rithm increases the number of transfer constraints imposed.

Our algorithm is an anytime planner: Given more time, it
generates plans with fewer regrasps and more transfers. The
algorithm enables the user to stop the planner and use the
current best plan if the cost of removing regrasps from the
plan exceeds the cost of executing those regrasps.

When imposing a new set of transfer constraints, our
algorithm does not solve the CSP from scratch: Solutions
with fewer (or no) transfer constraints are readily available
from previous cycles. We use state-of-the-art local search
methods for CSPs, which can be initialized with partial
solutions. Local-search methods work only in a locality
of the constraint graph and therefore their runtime is not
affected by the full size of the CSP [1], leading to fast
updates.

A. Related work

Recent work by Lozano-Pérez and Kaelbling [2] also rep-
resent sequential manipulation problems as CSPs. These ge-
ometric CSPs are formulated by a higher-level task planner.
Their focus is on the interface between the task planner and
CSP formulation, and they propose methods for constructing
the CSPs efficiently. The CSPs are solved by an off-the-shelf
solver. We propose an algorithm to solve the CSP itself by
using domain-specific assumptions, such as feasible regrasps.

The effectiveness and necessity of regrasping during ma-
nipulation have been recognized [3, 4]. We show that assum-
ing feasibility of regrasps we can simplify the CSP solutions
of manipulation plans significantly. Structures similar to the

Fig. 3: Example grasps for assembly parts.

grasp-placement space [5] or the grasp-graph [6] can be
precomputed to satisfy our regrasp feasibility assumption.

Our algorithm takes as input a sequence of relative poses
of assembly parts. Assembly planning [7, 8] addresses the
problem of finding such sequences. In this paper we find
robot configurations to realize an assembly plan.

Other grasp planners that take into account task constraints
[9, 10, 11] and multiple robots [12] exist. Unlike previous
work, we focus on planning such grasps in a sequential and
multi-robot context.

We use complete and local methods to solve CSPs. There
is extensive literature in this area but the treatment in Russell
and Norvig [1] covers all the methods we use.

II. PROBLEM

An assembly is a collection of simple parts at specific rela-
tive poses. A simple part by itself is also a (trivial) assembly.
Robots perform an assembly operation, o = (Ain, aout, p),
to produce an output assembly aout from a set of input
assemblies Ain. We also assume that a three-dimensional
pose in the environment, p, is specified as the location of an
operation.

During an assembly operation, input assemblies Ain must
be grasped and supported by robots at their respective poses
in aout at operation pose p. We assume that a local controller
exists to perform the fastening/screwing, once the parts are
at the poses specified by the assembly operation.

Note that our definition of an assembly operation also
applies to the grasp of a single part a, where Ain = {a}
is a singleton, aout = a, and p is the pose of a.

A robot can grasp an assembly by placing its gripper at
certain poses on the assembly. We assume we can compute a
set of such poses, grasps, for each assembly a. We illustrate



(a) Assembly operations for a chair (b) A complete constraint graph for the chair

(c) No transfer constraints (d) Trying to impose one transfer constraint (e) Searching a larger neighborhood

Fig. 4: The chair assembly example.

example grasps for simple parts in Fig. 3. We use Q to
represent the robot configuration space, which includes base
pose and arm joint configurations. If a configuration q ∈ Q
places the robot gripper at a grasping pose for assembly a
during operation o, we say that “q is grasping a during o”.
The robots must avoid collision during assembly operations.

Robots perform a sequence of assembly operations
O = [oi]

N
i=1 to gradually build large complex structures:

output assemblies of earlier operations are used as inputs
in later operations. Robots move the assemblies from one
operation to the next.

As an example, we present a sequence of assembly op-
erations to build a chair in Fig. 4a. This example includes
eleven operations: three operations in which multiple parts
must be assembled, and eight operations where a single part
must be grasped at its initial pose. Each arrow indicates an
instance where robots move an assembly from one operation
to the next.

Given a sequence of assembly operations, we formulate
the problem of multi-robot grasp planning for sequential
assembly operations as finding grasping configurations for
all the robots required by the assemblies in all the operations.

A. Moving assemblies between operations

Suppose o = (Ain, aout, p) and o′ = (A′
in, a

′
out, p

′) are
two operations such that aout ∈ A′

in; i.e. the output assembly
of o is one of the input assemblies of o′. We call o and o′

sequential operations. aout must be moved to o′ after o is
completed. There are two ways this can be done: transfer
and regrasp.

To directly transfer aout, one of the robots grasping an
assembly in Ain can keep its grasp and carry aout to o′.
There is flexibility; any a ∈ Ain may be used for the transfer.
For example, after the first assembly operation in Fig. 2, the
assembled structure can be transferred either by the grasp on

the back of the chair as in the figure, or alternatively by the
grasp on the side of the chair.

The alternative is to regrasp aout after o is completed.
Robots can regrasp an assembly in different ways: e.g. by
first placing it on the floor in a stable configuration and then
grasping it again, or with the help of other robots which
can temporarily grasp and support the assembly while it is
being regrasped. The important implication for our planning
problem is that the new grasp of aout can be different from
the grasps of all a ∈ Ain. An example is the regrasp after
the second assembly operation in Fig. 2.

III. CSP FORMULATION

Given a sequence of assembly operations O, we can
formulate multi-robot grasp planning as a CSP.

A CSP is defined by a set of variables X, a set of possible
values V(x) that each variable x can be assigned with, and a
set of constraints specifying consistent assignments of values
to variables. A solution to the CSP is an assignment of values
to all the variables that is consistent with all the constraints.

Variables: For our problem, we create one variable for the
grasp of each input assembly of each assembly operation. We
use oxa to represent the variable correponding to the grasp
of assembly a ∈ Ain of operation o ∈ O.

Values: The set of values for the variable oxa is the set
of robot configurations grasping the assembly:

V (oxa) = {q ∈ Q | q is grasping a during o.}

In general there can be a continuous set of robot configura-
tions grasping a, due to redundancy in the kinematics or due
to a continuous representation of grasping gripper poses on a
part. We discretize this continuous set by sampling uniformly
at a fine resolution.

Constraints: We define two sets of constraints: collision
constraints and transfer constraints. A collision constraint



c(x, x′) enforces that two robot configurations assigned to
x and x′ do not collide. We create a collision constraint
c(oxa, oxa′

) between each pair of variables of the same
operation o.

A transfer constraint t(x, x′) enforces that robot configura-
tions assigned to x and x′ grasp the same part while placing
the robot gripper at the same pose on the part.

Given any two sequential assembly operations
o = (Ain, aout, p), o′ = (A′

in, a
′
out, p

′), and an assembly
a ∈ Ain, we can create a transfer constraint between two
variables t(oxa, o

′
xaout). If the CSP with this constraint

has a solution, then the assembly aout can be transferred
directly from o to o′ using the grasp on a. Each different
choice of the transfer assembly a ∈ Ain corresponds to a
different transfer constraint we can impose. Solving for any
one of these transfer constraints is sufficient, however.

We can also choose not to create any transfer constraints
between o and o′. Our underlying assumption here is that,
whatever new grasp is required by aout during o′, it will
be feasible to achieve it with a regrasp after o — possibly
through a number of intermediate grasps. This is a reasonable
assumption in our domain where there is ample space in the
environment for robots to change from one feasible grasp to
another feasible grasp.

Given a CSP, we can represent the variables and con-
straints in a constraint graph. In this graph, there is a node
for each CSP variable, and an edge between two nodes
if a constraint exists between the variables. In Fig. 4b we
show a constraint graph for the chair assembly. Each node
corresponds to the grasp of a certain part during a certain
operation. In the figure, we show the image for the operation
inside the node and highlight the image of the part which
should be grasped. Light gray edges correspond to collision
constraints, and dark edges correspond to transfer constraints.
In this graph all operations are connected with transfer
constraints: If we can find a solution the robots will not
need to perform any regrasps.

A. Solving a CSP

Backtracking search is a widely used and complete al-
gorithm for solving CSPs. It searches forward by assigning
values to variables such that all assignments obey the con-
straints. If at any point the algorithm cannot find a value
for a variable which obeys the constraints, it backtracks by
undoing the most recent assignment. The search continues
until an assignment is found for all variables. If there is
no solution, backtracking search tries all combinations of
value assignments. The worst-case time complexity of back-
tracking search is exponential in the number of CSP vari-
ables. One can use domain-independent heuristics to prune
the search space. Minimum remaining value and forward-
checking [1] are two widely used heuristics.

Another approach to solving CSPs is by focusing on
a local neighborhood of the constraint graph so that the
computation time is not affected by the total size of the
graph. These local techniques start with an initial assignment
of values to variables, identify the conflict regions in the

constraint graph, and try to resolve the conflicts only in
the local neighborhood. One can use different methods in
the local neighborhood, e.g. a complete method like the
backtracking search or a heuristic-based search like the
min-conflicts [13] algorithm which greedily minimizes the
number of conflicts in the graph.

IV. ALGORITHM

We would like to find solutions which involve a small
number of regrasps, since each regrasp in the solution will
require extra time to plan and execute.

A naive way to find solutions with minimum number of
regrasps would be to create transfer constraints between all
operations and try to solve the resulting CSP (e.g. the graph
in Fig. 4b) with an algorithm such as backtracking search. If
this succeeds we have found a solution with no regrasps. If
it fails, we can remove one of the transfer constraints and try
to solve the resulting CSP problem again to find a solution
with one regrasp. If this fails, we can try removing a different
transfer constraint, and if that fails, we can try removing two
transfer constraints to find a solution with two regrasps; and
so on. We call this the naive CSP solution.

The problem with the naive CSP solution is that it tries to
solve the most difficult problems first: The CSP graph where
operations are connected with transfer constraints make the
search space exponentially larger. As we will show in the
results, this approach quickly becomes infeasible, requiring
hours to solve problems with only a few operations.

Instead, we propose an algorithm (Alg. 1) which works in
the opposite direction: it first solves the easiest problem, the
constraint graph with no transfer constraints, and then tries
to improve the solution by imposing an increasing number
of transfer constraints as more time is given.

This approach has two advantages. First, it leads to an
anytime planner which produces a solution quickly and
improves it as more time is given. The planner can be stopped
anytime after the initial solution has been achieved and the
current solution with the minimum number of regrasps can be
used. This, for example, enables the user to stop planning if
the planning time spent on imposing new transfer constraints
exceeds the time which is required to plan and execute those
regrasps. Second, this approach enables the use of local
search algorithms to quickly identify easy-to-solve transfer
constraints. We would like to solve easy transfer constraints
first since we want to minimize the number of regrasps as
much as possible before the time allocated to the planner
runs out.

A. Generating the “All-Regrasps” Plan

We first assume no transfer constraints between opera-
tions. Collision constraints remain, but they only constrain
variables within an operation. Hence, the constraint graph
is divided into N connected components where N is the
number of assembly operations. In Fig. 4c, we show this
graph for the chair assembly example.

We solve each of these connected components separately
using a complete CSP solver (lines 1-2 in Alg. 1). Any



Algorithm 1 Multi-Robot Grasp Planning for Assembly

Input: O = [oi]
N
i=1 is a sequence of assembly operations.

1: for each oi in O do
2: sol[oi] ← BACKTRACKINGSEARCH(oi)
3: best ← {sol[oi]}Ni=1

4: for n = 1 to MaxTransferConstraints do
5: best ← SOLVETRANSFERCONSTRAINTS(n,best)
6: procedure SOLVETRANSFERCONSTRAINTS(n,seed)
7: for enlarging neighborhood h do
8: for each T in TransferConstCombinations(n) do
9: sol ← SOLVECSPLOCAL(T, h, seed)

10: if sol exists then
11: return sol

complete CSP solver can be used. We use an implementation
of backtracking search with minimum remaining value and
forward checking. The combination of solutions for all
operations give the overall “all-regrasps” solution (line 3).
The “all-regrasps” solution is an inefficient, though valid,
plan.

B. Imposing Transfer Constraints

Once the “all-regrasps” solution is found, our algorithm
starts imposing a gradually increasing number of transfer
constraints (lines 4-5). Fig. 4d shows one example transfer
constraint added to the graph. The procedure SOLVETRANS-
FERCONSTRAINTS attempts to find a solution to n transfer
constraints. If a solution is found, it is recorded as the new
best solution, and the algorithm progresses to n+1 transfer
constraints. One can stop the algorithm anytime and use the
current best solution.

The procedure SOLVETRANSFERCONSTRAINTS tries to
solve for n transfer constraints as quickly as possible. It
iterates over all valid n-combinations of transfer constraints
(line 8). During this iteration we prioritize combinations
which include smaller combinations that we have previously
found solutions for. If we cannot find a solution for these
prioritized combinations we then try all combinations.

Instead of searching the complete graph and losing time on
difficult combinations, our algorithm performs local search
(line 9) which succeeds or fails quickly. Local search vari-
ables are initialized with values from the current best solution
(seed). Local search neighborhood size starts small (Fig. 4d)
but gets larger (Fig. 4e) if no solution can be found (line 7).

C. Analysis

We analyze several important properties of our algorithm.
1) Completeness:
Proposition 4.1: Algorithm 1 is resolution-complete.

Proof: We use a discrete CSP representation which
requires the discretization of the robot configuration space.
Assume we are given a resolution with which to discretize.
If the algorithm is unable to find a solution with no transfers
(as computed in line 3), then the only constraints that the
algorithm is unable to satisfy must be those within assembly

operations (i.e. collision constraints). This implies one of
the following: either the input problem itself is infeasible, or
no solution exists at the given resolution of discretization.
At a high enough sampling resolution, the second problem
disappears.

2) Optimality: We define optimality as returning the solu-
tion requiring the minimum number of regrasps. We do not
necessarily aim for optimality: if the time required to remove
more regrasps from the plan is more than the time required
to execute those regrasping operations, we would like to
stop planning and start execution. For this reason, in our
implementation we use the greedy min-conflicts algorithm for
our local search. In practice we have found it to produce good
results, however, min-conflicts does not guarantee optimality
and may get stuck in local minima.

Alg. 1, nevertheless, can be turned into an optimal planner
if a complete algorithm, e.g. backtracking search, is used to
search the local neighborhood.

Proposition 4.2: If a complete local search is used, then
Algorithm 1 returns the minimum regrasp solution.

Proof: Our algorithm can terminate immaturely with a
suboptimal solution only when it cannot improve the solution
via local search for a given number of constraints (line 5
in Alg. 1). However, our algorithm will expand the local
neighborhood to include the entire graph before failing (line
7). If the local search is complete, then this becomes a
complete graph search, and a complete graph search must
always find an improvement if it exists. The algorithm cannot
terminate if it has not found an optimal solution, and thus it
will always return the optimal solution.

3) Complexity: The naive CSP solution has an exponen-
tial runtime O(exp(n∗m)), where n is the maximum number
of robots involved in assembly operations and m is the
number of assembly operations (m ∗ n is the total number
of CSP variables). By comparison, our algorithm’s initial
solution has runtime O(m exp(n)) — exponential in the
number of robots per assembly operation but linear in the
number of assembly operations (since each operation can
be solved independently). Since n is typically very small
in practice, finding initial solutions is generally quick. The
complexity associated with improving the initial solution
depends on the local search technique used. If a complete
method such as backtracking search is used, the complexity
of improving the solution will approach the complexity of
the naive CSP algorithm as more transfer constraints are
imposed. We have, however, found the min-conflicts greedy
search to be a good trade-off between improvement speed
and optimality. As we show in §V min-conflicts improve
the solution quickly and reduces the number of regrasps
effectively. This is very practical for real-world applications
where a small number of regrasps is feasible.

V. EXPERIMENTS AND RESULTS

We implemented and evaluated our algorithm on an ex-
ample chair assembly operation. We show the sequence
of operations in Fig. 4a. The number of robots required
by the complex operations are 3, 3, and 4, respectively.



Fig. 5: Time to generate plans with decreasing number of
regrasps. In 17 out of 20 runs (red points) our algorithm
generated a plan with only one regrasp. In 3 out of 20 runs
(light green points) our algorithm generated a plan with two
regrasps.

The operations require the semi-assembled structures to be
transferred twice and simple parts to be transferred eight
times, totaling to ten potential regrasps. We implemented our
algorithm and evaluated it in the OpenRAVE environment
[14] with four KUKA YouBot robot models 1. We presented
the chair parts to the robots in an environment with some
obstacles, presented in Fig. 6a. These obstacles make the
problem even more constrained making a no-regrasp solution
impossible. Particularly one of the chair side parts must be
regrasped after its initial grasp.

We ran our algorithm on the chair example 20 times. In
17 of these runs, our algorithm found the optimal solution
with one regrasp and in 3 runs it generated a solution with
two regrasps. We plot how our algorithm reduces the number
of regrasps with time in Fig. 5. We plot the results for the
17 runs with one-regrasp solutions (red points) separately
from the 3 runs with two-regrasps solutions (light green
points) since they display different and consistent trends.
Each data point marks the average time it took our algorithm
to produce a plan with the number of regrasps given on the
vertical axis. The horizontal bars show the standard devi-
ations. Our algorithm generates the “all-regrasps” solution
in about 4 seconds and then improves the solution every
few seconds. The difference between the trends that find
one-regrasp solutions (red points) and two-regrasp solutions
(light green points) stems from the greedy nature of the min-
conflicts algorithm. In the 3 runs (15%) which generate two-
regrasp results, our algorithm gets stuck at a local minima.
Nevertheless, min-conflicts is able to reach the one-regrasp
plan in 17 (85%) of the cases.

We present part of an example plan in Fig. 6(b)-(d). The
robots are able to transfer the assembly between the complex
operations without a regrasp: The left-most robot holding
onto the side of the chair keeps its grasp fixed and transfers
the assembly between all three operations.

We also compare the performance of our algorithm with

1http://www.youbot-store.com

Alg. 1 Naive optimal

Chair 18.9 (12.7) > 3600 (?)
Grid 20.5 (10.1) > 3600 (?)

TABLE I: Average planning times in seconds. Standard
deviations are shown in parantheses. The naive algorithm
had to be stopped after running for an hour.

the naive CSP solution mentioned in §IV. This algorithm
is optimal, but also naive in that it tries to solve the full
CSP at once. In Tab. I we present the planning times of
our algorithm (all 20 runs combined) and the naive optimal
algorithm for the plans they can generate with the minimum
number of regrasps. Our algorithm can generate plans which
include one or two regrasps and is at least two orders of
magnitude faster. In these experiments we imposed a one-
hour time limit, and the naive algorithm exceeded this limit
in 5 out of 5 runs.

In Fig. 7 we show another example where robots build a
grid structure using square building blocks. Each operation
except the first one involves five robots. We ran our planner
on this example ten times. It was able to find four transfers
in all ten cases. We present the average time it took our algo-
rithm to find these solutions in Tab. I. The naive algorithm,
again, exceeded the time limit for these experiments.

The last scene in Fig. 7 shows a possible failure mode for
our planner. While the robot configurations are valid, one
of the robots become trapped inside the structure. As our
planner does not check for reachability to and from these
configurations one may expect such problems. A possible
solution is to impose a new reachability constraint to the
robot configurations and use a motion planner to check
against this constraint while solving the CSP. Lozano-Pérez
and Kaelbling [2] propose methods to perform these kinds
of checks in a fast way.

A. Real robot implementation

We are building a real robot team to perform autonomous
assembly of complex structures. The algorithm presented
in this paper provides our system with the sequences of
configurations in which to grasp and assemble parts, enabling
fast planning and minimal regrasping operations. In Fig. 8
we present snapshots from the execution of an assembly plan
generated by our algorithm. The complete execution can be
seen in the video accompanying this paper.

Our system consists of three KUKA Youbot robots, each
with an omni-directional base, a 5 degree-of-freedom arm,
and a parallel plate gripper. Perception in our system is
provided by a motion capture system2 which is able to detect
and track infra-red reflective markers. We localize our robots
and the initial location of assembly parts using such markers.
We use an RRT planner [15] to move the robots between
configurations generated by our algorithm.

We present the initial placement of parts and robots in
Fig. 8a. In Fig. 8b and Fig. 8c two robots use the planned

2http://www.vicon.com



(a) (b) (c) (d)

Fig. 6: (a) Initial locations of chair parts. (b)-(d) Solution for the assembly of our chair example.

Fig. 7: A plan for a five-robot team building a grid using square blocks.

(a) Initial scene (b) Grasping chair side (c) Grasping chair back

(d) The assembly configuration (e) Fastener insertion (f) Assembly

Fig. 8: Multi-robot execution of a chair assembly plan.

configurations to grasp the chair parts. The third robot holds
a fastener, and the robots bring these three parts together
in Fig. 8d, again using planned configurations. The robots
keep the same grasp on the parts through these operations,
enabling them to transfer parts between Fig. 8b-Fig. 8d and
Fig. 8c-Fig. 8d.

While our robots can successfully use the planner output to
bring parts to assembly configurations, they need to perform
highly precise manipulation operations to actually insert the
fastener and attach the parts to each other. We are currently
developing controllers and tools [16] to perform these opera-
tions. In this example human intervention is needed (Fig. 8e).
Fig. 8f shows the assembled structure, ready to be transferred
to the next operation.

VI. FUTURE WORK

While this paper has addressed the high-level planning
aspects of coordinated assembly, a system that can go
from a design input to complete assemblies with minimal
human assistance requires the development of more advanced
techniques both in control and reasoning.

Our system is able to plan robot configurations to bring
parts into specific relative configurations. However, error
accumulated from factors such as loose part grips and
localization uncertainty require on-board local controllers for
fine manipulation operations.

Our current formulation adresses geometric collision con-
straints during assembly operations. Other constraints, how-
ever, must also be taken account for a robust system capable



of a wide variety of assembly operations. An important class
of constraints are the stability constraints which require that
the grasps on assembly keeps it stable with respect to gravity
and other forces that arise during an assembly operation such
as screwing.

REFERENCES

[1] S. J. Russell and P. Norvig, Artificial Intelligence: A
Modern Approach, 2nd ed., 2003.

[2] T. Lozano-Pérez and L. P. Kaelbling, “A constraint-
based method for solving sequential manipulation plan-
ning problems,” in IROS, 2014.

[3] T. Lozano-Pérez, J. Jones, E. Mazer, P. O’Donnell,
W. Grimson, P. Tournassoud, and A. Lanusse, “Handey:
A robot system that recognizes, plans, and manipu-
lates,” in ICRA, 1987.

[4] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani,
“Manipulation planning with probabilistic roadmaps,”
IJRR, vol. 23, no. 7-8, 2004.

[5] P. Tournassoud, T. Lozano-Pérez, and E. Mazer, “Re-
grasping,” in ICRA, 1987.

[6] N. Dafle, A. Rodriguez, R. Paolini, B. Tang, S. Srini-
vasa, M. Erdmann, M. Mason, I. Lundberg, H. Staab,
and T. Fuhlbrigge, “Extrinsic dexterity: In-hand manip-
ulation with external forces,” in ICRA, 2014.

[7] R. H. Wilson and J.-C. Latombe, “Geometric reason-
ing about mechanical assembly,” Artificial Intelligence,
vol. 71, no. 2, 1994.

[8] R. A. Knepper, T. Layton, J. Romanishin, and D. Rus,
“Ikeabot: An autonomous multi-robot coordinated fur-
niture assembly system,” in Robotics and Automa-
tion (ICRA), 2013 IEEE International Conference on.
IEEE, 2013, pp. 855–862.

[9] D. Berenson and S. S. Srinivasa, “Grasp synthesis in
cluttered environments for dexterous hands,” in Hu-
manoids, 2008.

[10] D. Berenson, S. S. Srinivasa, and J. Kuffner, “Task
space regions: A framework for pose-constrained ma-
nipulation planning,” IJRR, 2011.

[11] H. Dang and P. K. Allen, “Semantic grasping: Plan-
ning robotic grasps functionally suitable for an object
manipulation task,” in IROS, 2012.

[12] N. Vahrenkamp, E. Kuhn, T. Asfour, and R. Dillmann,
“Planning multi-robot grasping motions,” in Humanoid
Robots (Humanoids), 2010 10th IEEE-RAS Interna-
tional Conference on. IEEE, 2010, pp. 593–600.

[13] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird,
“Minimizing conflicts: a heuristic repair method for
constraint satisfaction and scheduling problems,” Arti-
ficial Intelligence, vol. 58, no. 1, pp. 161–205, 1992.

[14] R. Diankov, “Automated construction of robotic manip-
ulation programs,” Ph.D. dissertation, CMU, Robotics
Institute, August 2010.

[15] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An
efficient approach to single-query path planning,” in
Robotics and Automation, 2000. Proceedings. ICRA’00.

IEEE International Conference on, vol. 2. IEEE, 2000,
pp. 995–1001.

[16] M. Dogar, R. A. Knepper, A. Spielberg, C. Choi,
H. I. Christensen, and D. Rus, “Towards coordinated
precision assembly with robot teams,” Proceedings of
the International Symposium of Experimental Robotics,
ISER., 2014.


	I INTRODUCTION
	I-A Related work

	II Problem
	II-A Moving assemblies between operations

	III CSP Formulation
	III-A Solving a CSP

	IV Algorithm
	IV-A Generating the ``All-Regrasps'' Plan
	IV-B Imposing Transfer Constraints
	IV-C Analysis
	IV-C.1 Completeness
	IV-C.2 Optimality
	IV-C.3 Complexity


	V Experiments and Results
	V-A Real robot implementation

	VI Future Work

