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Abstract. We present a system in which a flexible team of robots coor-
dinate to assemble large, complex, and diverse structures autonomously.
Our system operates across a wide range of spatial scales and tolerances,
using a hierarchical perception architecture. For the successful execution
of very precise assembly operations under initial uncertainty, our system
starts with high-field of view but low accuracy sensors, and gradually
use low field-of-view but high accuracy sensors. Our system also uses
a failure detection and recovery system, integrated with this hierarchi-
cal perception architecture: upon losing track of a feature, our system
retracts to using high-field of view systems to re-localize. Additionally,
we contribute manipulation skills and tools necessary to assemble large
structures with high precision. First, the team of robots coordinate to
transport large assembly parts which are too heavy for a single robot to
carry. Second, we develop a new tool which is capable of co-localizing
holes and fasteners for robust insertion and fastening. We present real
robot experiments where we measure the contribution of the hierarchical
perception and failure recovery approach to the robustness of our sys-
tem. We also present an extensive set of experiments where our robots
successfully insert all 80 of the attempted fastener insertion operations.

Keywords: Robotic Assembly, Robotic Manufacturing, Robot Teams,
Distributed Control, Precision Assembly, Perception

1 Introduction

Manufacturing systems of today have very limited flexibility, often requiring
months of fine-tuning before an industrial assembly line is ready for production.
We envision the manufacturing systems of the future, in which agile, flexible
teams of mobile robots coordinate to assemble complex and diverse structures
autonomously. Here, we define flexibility as the ability for robots to change tasks,

3 The first three authors contributed equally to this paper.
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factory floors to be reconfigured, and similar parts to be interchanged without
reprogramming the system.

This approach has the potential to meet the demands of modern production:
ever-shortening product life-cycles, customized production, and efficiency [2]. In
this paper we present a significant step in this direction through an exemplar
task. We present a system in which a fleet of robots perform the following task,
which requires a heterogeneous team of four robots with different skills to align
and fasten an upper wing panel to a corresponding wing ladder. We outline the
task below, but see Fig. 1 for precise details:

– A robot specializing in fine perception and manipulation localizes a hole on
a wing ladder.

– A fleet of two robots lift and rotate a wing panel which would be too heavy
for a single robot to manipulate single-handedly.

– Using a robot specializing in coarse perception for guidance, the fleet aligns
the panel to the ladder.

– Using the fine perception/manipulation robot for guidance, the fleet aligns
a hole on the panel with a hole on the ladder.

– The fine perception/manipulation robot inserts the first fastener.
– Using the bounding geometry of the ladder, one of the fleet robot aligns the

wing panel with the wing ladder.
– Finally, with all four holes aligned, the fine perception/manipulation robot

inserts the three remaining fasteners into the remaining holes.

In particular, we present the following contributions:

1. A hierarchical perception system formalized in the context of integrated
perception and manipulation over changing task scales and scopes.

2. The demonstration of a new rigid LIDAR and fastener tool which allows for
simultaneous localization and fastener insertion within the same coordinate
frame.

3. A simple but robust controller for the collaborative manipulation of ob-
jects whose manipulations are outside the physical limits of single individual
robots.

4. A flexible system that is not bound to any particular a priori configura-
tion, allowing for the dynamic re-organizing of part-feeders, workspaces, and
robots on factory floors.

With respect to our first contribution, our vision challenges the robots to
operate across a wide range of spatial scales and tolerances. Consider the task of
attaching a panel to a complex assembly. First, the robots move the panel from
a storage rack to the assembly site (Fig. 1a-Fig. 1c). Second, the robots insert
fasteners to attach the panel to the assembly (Fig. 1d-Fig. 1h). The first task
requires perception and control at a spatial scale which captures the parts and
sometimes the whole factory floor and tolerates relatively large errors in posi-
tioning. The second task requires fine perception and control with much tighter
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(a) Locate/grasp parts (b) Transport of parts (c) Part alignment

(d) Hole alignment (e) Fastener insertion

(f) Fastener 2 (g) Fastener 3 (h) Fastener 4

Fig. 1: Assembly tasks involve large-scale operations such as transport and fine
manipulation operations such as hole alignment and fastener insertion.

tolerances. With existing technologies, no monolithic perception and control ap-
proach solves both problems. In this work, we contribute a hierarchical approach
in which different layers of localization and control systems interact to satisfy
the continuously changing scale and precision requirements. See Tab. 1 for an
example flow of control across the levels of the hierarchy.

By exploiting our system’s hierarchical perception formalization we also in-
troduce an failure recovery system. We present systems which can determine
when insufficient precision as been obtained. Our system allows us to move
freely between adjacent levels in the perception hierarchy, allowing us to re-seed
failed searches and tracking procedures with better initial guesses. This allows
us to avoid lengthy searches in the absence of useful feature information by
falling back to estimates which are coarser but larger in scope. Such a system
is applied to hole alignment but could also be applied to a number of other
manipulation tasks in other systems which involve active perception and esti-
mation, including precision grasping and collision-free navigation of cluttered
factory environments.

An important challenge in flexible factory automation is enabling fine ma-
nipulation skills, e.g. inserting a fastener or screwing a nut. Much like human
workers, robots need specialized tools and skills (control algorithms) to perform
these operations to specifications. We’ve developed such a tool (Fig. 3) to unify
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sensing and actuation in the tool frame, thus delivering high precision, as sug-
gested in our second listed contribution.

A team of robots working in a factory requires coordination and collabora-
tion. The coordination can be loosely coupled, as in collision-free navigation, or
tightly-coupled, as when carrying a large part (Fig. 1b) as a team. Our system
displays coordination between robots at these various levels.

Our approach for these, our third and fourth contributions, is holistic: we
are interested in the challenges and questions that developing a complete system
raises. The literature has approached the underlying problems separately. Many
methods have been proposed for collaborative manipulation/transport of objects
by a team of robots [9, 12, 15, 23, 25]. Particularly, Desai and Kumar [9] propose
a motion planning approach for a team of robots transporting an object among
obstacles; and Khatib et al. [12] present a decentralized control framework for
the manipulation of an object with a system of multiple manipulators. Similar
approaches have been applied to the factory floor [14, 20] where a team of robots
transport an object with the help of human input. We present a system where
the team of robots transport an object in the context of a complex task. To do
this, they must form a fleet, and maintain specified relative arm configurations
while making progress toward goal positions. We develop control algorithms
which treat fleets (connected by manipulated objects) as rigid movable bodies
and are able to correct for erroneous deviations. Our control/perception envi-
ronment is not structured specifically for a transport task, but is generic enough
to accommodate other assembly tasks.

One generic and important assembly operation is fastening multiple parts
together. In our system this is achieved by inserting fasteners through holes on
the parts. This operation, sometimes called peg-in-hole in the literature, has
been studied extensively. One approach to this problem is to use a hybrid force-
position control [17, 19], which, through force sensing and compliant motion
[11], enables a manipulator to slide along surfaces. Combined with a principled
approach to dealing with uncertainty [16], a high-precision operation such as
peg-in-hole can be accomplished through a set of guarded-moves. This approach,
however, may not be feasible if the assembly parts are very sensitive and prone to
scratching. In our implementation we avoid making forceful interaction with the
surfaces of assembly parts. Instead of a series of guarded moves, we use extensive
and high-accuracy sensor readings to localize the hole, and a compliant shape
for the fastener tip to account for any remaining inaccuracy in localization.

Robotic perception literature and technology provide a rich set of tools [4, 6,
21] which can be used for certain tasks in the factory setting. While these systems
work best when the object is closer than a few meters, the accuracy drops as the
object gets too far or too close. In addition, visual perception is highly challenged
in many cases: occlusions, cluttered backgrounds, and image blurring because of
fast motions either in objects or camera. To overcome these limitations of visual
perception, it is often combined with motion estimation [13] or tactile sensing
[1, 10]. Skotheim et al. [22] use functional feature detection for low-level industrial
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Robot

R1 R2 R3 R4

Move to hole 1
neighborhood

Navigate to and move gripper to panel Localize box Find hole 1 in box

Close grippers and form fleet Find hole 1 in box

Pick up panel

Orient panel to horizontal

Transport panel into neighborhood of
box

Servo panel into alignment with ladder Localize panel

Servo panel hole 1 into alignment with
ladder hole 1

Localize panel hole
1

End fleet formation and open grippers Insert fastener 1

Move out of the
way

Align panel hole 2
to box hole 2

Move out of the
way

Navigate to panel
hole 2

Move out of the
way

Localize hole 2

Insert fastener 2

Navigate to hole 3

Localize hole 3

Insert fastener 3

Navigate to hole 4

Localize hole 4

Insert fastener 4

Table 1: Flow of actions among four robots during attachment of a panel to a box.
Time flows from top to bottom. Box colors indicate the type of localization used
in each action. Blue boxes indicate fiducial based localization. Green boxes de-

note object-shape based tracking. Pink boxes indicate functional-feature level
localization. White boxes indicate sensorless operations.

manipulation. Although the literature provides these powerful tools, any single
one is insufficient to overcome the challenges of flexible factory environments.

2 Hierarchical Localization and Control Approach

Various objects and features of a flexible factory environment require various
perception and control technologies and a smooth integration among them.
We present a three-tiered perception and control structure, comprising fiducial
based, object-shape based, and functional-feature based approaches.

Fiducial based technology tracks non-production parts, part sources, and
robots, using a motion capture system like Vicon1. Motion capture provides

1 http://www.vicon.com/
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highly accurate, sub-centimeter localization accuracy, but it is restricted to track-
ing parts to which external fiducials may be affixed. For many production parts,
attaching fiducials is undesirable and impractical. Furthermore, occlusion can
be a problem. Thus, complementary localization methods are needed.

Object-shape based tracking is implemented as a particle filtering approach
using an RGB-D camera [5]. 3D mesh models of production parts are known a
priori, and three visual features—colors, depth points, and normals—are used to
calculate the likelihood of each particle hypothesis with respect to the current
RGB-D scene. Our system localizes the box and panel from a single RGB-D
camera. The robot carrying the camera can be seen at the top in Fig. 1c. The
system may exploit the freedom of the camera’s point of view to avoid occlusion.

Functional-feature based tracking for hole alignment and insertion is the most
demanding part of our task as it requires very high-precision coordination among
multiple robots. We use a coordinated control procedure along with a specialized
tool, explained in the next section.

We hypothesize that without the use of all three levels in the sensing and
control hierarchy, the system cannot achieve robust fastener insertion. In the
rest of this section, we discuss the levels of the hierarchy and how the robots
may smoothly transition up and down through them.

2.1 Sequential Composition of Sensors

The funnel analogy has long served in robotics literature to represent the act of
reducing uncertainty or error in the configuration of an object. Mason [18] first
introduced the concept in the context of performing sensorless manipulation ac-
tions that employ passive mechanics to reduce part uncertainty. Later, Burridge
et al. [3] applied the funnel analogy to feedback control in the form of sequential
composition of controllers, spawning much follow-on work [7, 8, 24]. This body
of work is sensor-agnostic in that the type and quality of sensor data is assumed
to be homogeneous throughout the configuration space.

A contribution of this paper is sequential composition of sensors used for
localization. Each sensor operates over some capture volume, or scope, which is
the top of the funnel. Within the scope, it delivers to the robot a pose estimate
that reduces uncertainty with some accuracy, which is the bottom of the funnel.
Each of the localization technologies we employ imposes errors that limit accu-
racy in three categories: (1) sensor error, (2) indirection error and (3) semantic
calibration error. Sensor error, the accuracy claimed by the sensor manufacturer,
is typically the smallest contribution to overall error in performing localization.

Indirection error stems from the fact that sensors rarely localize the desired
coordinate frame directly. Instead, they sense some set of features, each with
some transform to the desired frame. This indirection leads to two sources of
error: (1) small errors in orientation are magnified by translation, and (2) the
feature poses may not be well calibrated to the desired frame. All three local-
ization technologies exhibit indirection error. Since fiducials cannot be applied
directly to the part being assembled, the robot hands must be tracked instead
with fiducial based technology. The position of each hand on the object may not
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Approach Sensor
Scope
(m3)

Error (m) Net
accuracy

(m3)Sensor Indirection
Semantic

calib.

Fiducial based Vicon 102 10−3 10−1 10−2 10−3

Object-shape based Kinect 100 10−2 10−2 10−2 10−6

Functional-feature
based Hokuyo

10−2 10−3 10−3 0 10−9

Table 2: Order of magnitude of sensor capabilities and of errors induced by the
usage model. See the text for a description of error sources. Net accuracy is the
volume resulting from the sum of the three distance errors.

be well known (as in Fig. 2). Since the hands grasp the perimeter of the object,
the indirection error of fiducial based methods is proportional to the size of the
part, making them the coarsest level of the hierarchy. In the case of object-shape
based tracking, a point cloud over a smooth panel surface (as in Fig. 1) produces
substantial ambiguity about the location of each point on the object and hence
of the the object origin. It is the indirection error that the particle filter strives
to minimize. Finally, the functional-feature based hole detector tracks the hole’s
circumference, whereas the center of the hole is desired. In the case of a circular
hole, the resulting indirection error is minimal due to symmetry.

Finally, semantic calibration error originates from the fact that a perception
model used for localization must be calibrated against the semantic model used
for manipulation. For example, fiducials placed on the robot for motion capture
must be manually calibrated to the robot’s pose. Similarly, for object-shape
based tracking, the origin and shape of the CAD model of the tracked object
may not match the origin and shape of the physical object. The functional-
feature based hole tracker has no semantic calibration error because the sensor
directly tracks a semantic feature.

Given a position estimate of the object with uncertainty, it may be within
scope of several sensors, giving the system some flexibility in which technology to
use (see Tab. 2 for a summary of sensor capabilities). This flexibility allows the
system to be tolerant to effects such as occlusion or communication drop-outs.
The typical progression of the localized feedback control system is to servo the
object into position at increasingly detailed scales.

2.2 Failure Recovery

Failures in execution can happen at any step of the assembly operation. To make
sure that the assembly operation completes successfully, our system detects and
tries to recover from failures.

The hierarchical perception/control structure provides the backbone of our
failure recovery approach. During successful execution, the control is handed-off
from higher levels to the lower levels: higher levels perform coarse localization
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and lower levels perform precision tasks. Failure recovery is implemented as
the inverse process, where the control is handed off from lower levels to higher
levels: lower levels of perception are precise in tracking objects/features but have
limited scope, which may result in the tracked objects/features getting lost. In
such a case the control is handed-off to the higher level for a coarse but large
scope localization.

A crucial example of the failure recovery process occurs during alignment
of the panel-hole with the box-hole. To accomplish this task, the panel is first
aligned with the box using the object-shape based perception system, which has
a large scope but low accuracy. Once the panel is coarsely aligned with the box,
the functional-feature based localizer takes over to track the panel-hole and align
it with the box-hole. This localizer has high accuracy but a small scope. The
scanner occasionally loses track of the hole due to the small scope and the noise
in the arm and base motions of the robots during alignment. In such a case,
the system reverts back to the previous level, the object-shape based alignment.
The larger scope re-aligns the panel with the box and hands over the control to
the functional-feature based tracker once more. This process continues until this
sensor successfully tracks the panel-hole and aligns it with the box-hole.

This approach to detecting and recovering from failure provides significant
robustness to our system. Even if the individual layers permit failure, the overall
architecture displays very high robustness as long as failures are detected and
the system is started from a recoverable state.

2.3 Fleet Control

For collaborative transport of large parts, the robots perform a distributed,
collective behavior inspired by human group behavior using force feedback and
observation of others. In fleet control mode, the robots maintain a fixed formation
of arbitrary shape while holding an object, as in Fig. 2.

Initially, each robot separately moves into formation by grasping the object
at an appropriate location. Robot n’s pose, fn is measured at this grasp point
because the other robots can readily localize its hand. Formation control ini-
tializes via a synchronization broadcast message. Upon initialization, the robots
compute a common reference origin fo for the object. Robot n represents the
fleet origin in its own frame as T fo

fn
. The position of the origin defaults to the

mean of all robot hand positions, and its orientation initializes to that of the
global coordinate frame (i.e. Vicon frame). Henceforth, the global frame is not
needed as all coordinates are given in fo or fn. If desired, fo can be moved with
respect to the fleet.

Group motions are commanded as a twist w specified in frame fo. Each
robot computes its own hand motion in order to comply with w in six degrees of
freedom (DoFs) . Hand motions are achieved through base motion when possible
(X, Y, yaw) and arm motion otherwise (Z, roll, pitch). It should be noted,
however, that the KUKA youBot cannot achieve full six DoF motion due to
their arm kinematics. Therefore, the task presented in this paper involves only
five DoF object manipulation.
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part

fo
f4

f3

f2

f1

Fig. 2: Through fleet control, an arbitrary number of robots collaboratively carry
a part in an arbitrary shape formation. Individual robot motions are computed
with respect to a commanded twist at the fleet origin, o. Each robot n maintains
the pose of the fleet origin in its own local coordinate frame, fn, so there is no
need for a global reference. The algorithm is fully distributed.

An important function of the fleet controller is to maintain a stable fleet
formation. Any position error introduced by group motion will cause the fleet
origin to drift away from its target pose in the frame of the robots. A PD
controller introduces correction terms to the body and arm motions in order to
maintain the correct fleet formation.

Similarly, force exchange among the robots through the object can indicate
an error in desired position. The robots’ arm joints perform PD velocity control
on joint angle. In the steady state, an error derived from the joint torques can
be attributed to a combination of gravity and an error in the fleet formation.
Thus, the robot has detected a resultant force from the combined motion of the
rest of the fleet. In response to this force, the fleet controller applies a correction
term to T fo

fn
.

Since each robot computes a motion consistent with the fleet twist command,
any residual force results from an error in the formation, which may have two
causes. First, the robot may drift slightly out of formation while carrying a
rigid object. Second, the object may be somewhat deformable. Although the
fleet cannot deliberately exploit deformability of material, it will accommodate
deformations induced by the carrying operation by slightly varying the formation
in response to these joint torques.
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2.4 Coordinated Mating of Holes and Fastener Insertion

To achieve millimeter-scale accuracy, we employ a custom-built end-effector tool
on which both a Hokuyo LIDAR and a fastener are rigidly affixed (Fig. 3-left).
This sensor fulfills the functional-feature based localization in the hierarchy.

Algorithm 1 Coordinated alignment of holes

1: function AlignHoles
2: while hole-width < threshold do
3: twist ← FastenerRobot.DesiredPartMotion(history)
4: Fleet.MovePart(twist)
5: hole-width ← FastenerRobot.EstimateHoleWidth()
6: history.Add(hole-width)

7: function Fleet.MovePart(twist)
8: for each robot in fleet do
9: pose ← robot.ComputePoseRelativeToPart()

10: robot-twist ← Transform(twist,pose)
11: Robot.Move(robot-twist)

We present the collaborative procedure by which our system aligns the holes
of two different parts in Alg. 1. This procedure is executed after the robot with
the fastener locates the hole on one of the parts (the box, in our example) and the
fleet of robots brings the panel into the vicinity using the object-level tracking.

The goal in Alg. 1 is to achieve an alignment within the tolerance required by
the fastener. At each step the robot with the tool estimates (line 5) the alignment
of the two holes (Fig. 3-center) by measuring the width of the opening (Fig. 3-
right). If the opening is not large enough (line 2), the fastener robot commands a
new velocity twist for the moving part (lines 3-4). In computing this, the fastener
robot can use the history of readings to maximize the alignment using gradient
ascent. We implement this by making the fleet follow a series of waypoints.

��LIDAR
-fastener

HY
robot hand

Fig. 3: Left: Hole alignment and insertion tool. Center: Alignment of two holes
is achieved by estimating the width of the opening. Right: Example real data
used to estimate the width of the opening.
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(a) (b) (c)

Fig. 4: Assembly parts used in our experiments. (a) Panel. (b) Box. (c) A fastener
and hole (misaligned) as used in this task. The fastener is an adapted cleco. The
holes were drilled to permit a cleco to fit up to the flange with a tolerance of
1.5 mm.

A twist for the moving part commands the robots in the fleet to move (line 7-
11) using decentralized fleet control. After the holes are aligned, the fastener can
be inserted. The fastener is placed directly in line with the LIDAR’s laser scan,
thus allowing the robot to know exactly where the fastener is with respect to a
detected hole at all times, and to bring the fastener over the hole.

3 Experiments

We use a team of four KUKA Youbots for our experiments. These robots are
tasked with assembling a panel (Fig. 4a) on a box (Fig. 4b) using fasteners
(Fig. 4c). The panel and box are initially placed on supporting racks, which have
markers for the fiducial-based Vicon tracking system. Two of the robots, R1 and
R2, are responsible for the manipulation of the panel. Robot R3 carries a Kinect
RGB-D camera which performs the object-shape based tracking of the panel and
the box. Robot R4 carries the insertion tool (Fig. 3-left). The insertion tool has
an integrated Hokuyo laser scanner which performs the functional-feature based
alignment with the holes on the box and the panel.

We measure the effectiveness of different components of our perception and
control hierarchy by running experiments with three different configurations of
this system:

1. Fiducial-based + Object-shape-based (FO): In this case, the panel and box
are aligned only using the object-shape based tracking and control. The
functional-feature based tracking, i.e. the Hokuyo laser scanner is not used.

2. Fiducial-based + Functional-feature-based (FF): In this case, the object-
shape based tracking of the panel and box is left out, i.e. the Kinect RGB-D
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Hole
localization

Ladder-panel
alignment

Total

Mean Time (sec) 92 37 679
Min Time (sec) 27 17 569
Max Time (sec) 259 141 849

Table 3: Execution times

sensor is not used. Instead, the robots remember their grasping configura-
tion of the panel and assume it does not change relative to the robot hands
during the course of the task.

3. Fiducial-based + Object-shape-based + Functional-feature-based (FOF): Our
system as described in §2 where the objects are tracked using the Kinect
RGB-D camera and the hole is aligned using the Hokuyo laser scanner.

With our system we performed two sets of experiments. First, we ran our sys-
tem in the FOF configuration 22 times to measure the robustness, the contribu-
tion of our failure recovery system to the robustness, and the overall speed of our
system. A video of one such run is available at: http://youtu.be/cmJTsyIgCRo

Second, we performed experiments to measure the contribution of the hier-
archical perception architecture to the robustness of our system. In these set of
experiments we created perturbations to the pose of the panel as it was being
carried. Under these perturbations we ran our system four times in each of the
FO, FF, and FOF configurations, totaling to twelve more runs.

4 Results

We start with reporting the results of 22 experiments in the FOF configuration.
Our system showed a remarkable robustness for such a complicated and long
task. Aside from two hardware failures of unknown cause, the system succeeded
20 out of 20 times. Tab. 3 shows the average time of 20 successful runs along
with the minimum and maximum durations. The first column shows the time
spent for localizing the four holes on the assembly during each run. The second
column shows the time spent during aligning the panel to the box using the
object-based tracking system. The last column shows the execution time for the
complete assembly operation.

The first set of experiments also showed the important contribution of failure
recovery to the robustness of our system. In 20% of panel alignment attempts the
two holes were not aligned precisely, which resulted in failure recovery getting
triggered. After failure recovery the holes were aligned and the fasteners were
successfully inserted. During these experiments our system attempted 80 fastener
insertions and succeeded in all of them.

We report the result of our second set of experiments in Tab. 4. Here we
perturb the position of the grasped panel to measure the robustness of our

http://youtu.be/cmJTsyIgCRo
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Success Notes

FO 1/4 Successful run scratched panel surface on 2 of the 4 holes.
FF 2/4 Panel hole search timed out at 10 minutes.
FOF 3/4 All succeeded for hole alignment but one failed during fastener insertion.

Table 4: Comparison of the performance of different configurations of our system.

system. The first two cases show the system running with certain layers of the
hierarchical perception system removed. In these cases the system was not able
to get precise alignment between the holes of the panel and the box. The full
hierarchical perception system was able to get precise alignment between the
holes in all four cases, but had trouble with the insertion of the fastener since
the insertion routine was not adaptive to the changed height of the panel due to
the perturbation. However our full system was robust in achieving the precise
hole alignment.

5 Insights and Conclusion

The results show that intelligent use of a hierarchical perception system can
greatly improve the robustness of a manufacturing system to be nearly perfect.
The system not only is able to perform collaborative carrying, precise alignment,
and collision-free insertion, but is also able to detect and fix the rare errors in
alignment. Further, the only failures were in the cases of high-torque-driven arm
failures, in which the system failed in the collaborative carry step. In addition,
we have demonstrated that use of object-based tracking makes the system robust
to outside perturbations or other internal errors that could lead to poor grasps.

Robustness is a key attribute for maximizing productivity in manufacturing.
Traditional factory robots are bolted to the floor, thus achieving sensorless high
precision through kinematics. Modern factory automation processes eliminate
uncertainty through careful, time-consuming human design. Product changes
require re-engineering of the process, contributing to a lack of versatility. Instead,
we present a flexible system which achieved alignment within tolerance in 100%
of trials, but the fastener motion caused a failure in one of the perturbed cases.

We have identified several avenues for improving fastener insertion. Most
importantly, torque feedback at the fastener tip flags an insertion failure. Soft
guard materials around the fastener might help to avoid damaging fragile parts.

Our experiments validated our hypothesis that a hierarchical sensing sys-
tem improves robustness in assembly. Removal of either the functional-feature
based or the object-shape based localization from the hierarchy substantially
diminished the successful completion performance of the system. With all three
sensing systems, any gaps in perception by one sensor can be filled by one of the
other sensors, allowing for a smooth transition among operating scales.

As many assembly procedures are composed of successive individual steps
each of which must succeed, identifying and recovering from failures is crucial. A
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single failed step either requires a method of recovery failure or requires a restart
of the procedure. Potential failure modes of the system include: misalignment
of the two holes and fastener, dropping the panel prematurely, and incorrectly
tracking the panel or features. We implemented automatic failure detection and
handling algorithms for many of these problems and have designed the system
to minimize the incidence of failure.

Acknowledgment

This work was supported by The Boeing Company. We are grateful for their
support.

References

[1] Allen, P.K.: Integrating vision and touch for object recognition tasks. Intl.
Journal of Robotics Research 7(6), 15–33 (1988)

[2] Bourne, D.: My boss the robot. Scientific American 308(5), 38–41 (2013)
[3] Burridge, R.R., Rizzi, A.A., Koditschek, D.E.: Sequential composition of

dynamically dexterous robot behaviors. Intl. Journal of Robotics Research
18(6), 534–555 (1999)

[4] Choi, C., Christensen, H.I.: Robust 3D visual tracking using particle filtering
on the Special Euclidean group: A combined approach of keypoint and edge
features. Intl. Journal of Robotics Research 31(4), 498–519 (Apr 2012)

[5] Choi, C., Christensen, H.I.: RGB-D object tracking: A particle filter ap-
proach on GPU. In: Proceedings of the IEEE Intl. Conference on Intelligent
Robots and Systems. pp. 1084–1091 (2013)

[6] Collet, A., Martinez, M., Srinivasa, S.S.: The moped framework: Object
recognition and pose estimation for manipulation. The Intl. Journal of
Robotics Research 30(10), 1284–1306 (2011)

[7] Conner, D.C., Rizzi, A.A., Choset, H.: Composition of local potential func-
tions for global robot control and navigation. In: Proceedings of the IEEE
Intl. Conference on Intelligent Robots and Systems. vol. 4, pp. 3546–3551.
IEEE (2003)

[8] Das, A.K., Fierro, R., Kumar, V., Ostrowski, J.P., Spletzer, J., Taylor,
C.J.: A vision-based formation control framework. IEEE Transactions on
Robotics and Automation 18(5), 813–825 (2002)

[9] Desai, J.P., Kumar, V.: Motion planning for cooperating mobile manipula-
tors. Journal of Robotic Systems 16(10), 557–579 (1999)

[10] Ilonen, J., Bohg, J., Kyrki, V.: Fusing visual and tactile sensing for 3-D
object reconstruction while grasping. In: Proceedings of the IEEE Intl.
Conference on Robotics and Automation. pp. 3547–3554 (2013)

[11] Inoue, H.: Force feedback in precise assembly tasks. Tech. rep., DTIC Doc-
ument (1974)

[12] Khatib, O., Yokoi, K., Chang, K., Ruspini, D., Holmberg, R., Casal, A.: Co-
ordination and decentralized cooperation of multiple mobile manipulators.
Journal of Robotic Systems 13(11), 755–764 (1996)



Towards Coordinated Precision Assembly with Robot Teams 15

[13] Klein, G., Drummond, T.: Tightly integrated sensor fusion for robust visual
tracking. Image and Vision Computing 22(10), 769–776 (2004)

[14] Lenz, C., Nair, S., Rickert, M., Knoll, A., Rosel, W., Gast, J., Bannat, A.,
Wallhoff, F.: Joint-action for humans and industrial robots for assembly
tasks. In: RO-MAN. pp. 130–135 (2008)

[15] Li, Z., Ge, S.S., Wang, Z.: Robust adaptive control of coordinated multiple
mobile manipulators. Mechatronics 18(5-6), 239–250 (Jun 2008)

[16] Lozano-Perez, T., Mason, M.T., Taylor, R.H.: Automatic synthesis of fine-
motion strategies for robots. The International Journal of Robotics Research
3(1), 3–24 (1984)

[17] Mason, M.T.: Compliance and force control for computer controlled ma-
nipulators. Systems, Man and Cybernetics, IEEE Transactions on 11(6),
418–432 (1981)

[18] Mason, M.T.: The mechanics of manipulation. In: Proceedings of the IEEE
Intl. Conference on Robotics and Automation. vol. 2, pp. 544–548. IEEE
(1985)

[19] Raibert, M.H., Craig, J.J.: Hybrid position/force control of manipulators.
Journal of Dynamic Systems, Measurement, and Control 103(2), 126–133
(1981)

[20] Reinhart, G., Zaidan, S.: A generic framework for workpiece-based program-
ming of cooperating industrial robots. In: ICMA. pp. 37–42 (2009)

[21] Rusu, R.B., Bradski, G., Thibaux, R., Hsu, J.: Fast 3d recognition and pose
using the viewpoint feature histogram. In: IROS. pp. 2155–2162 (2010)

[22] Skotheim, Ø., Nygaard, J.O., Thielemann, J., Vollset, T.: A flexible 3d
vision system based on structured light for in-line product inspection. In:
Electronic Imaging 2008. pp. 680505–680505 (2008)

[23] Sugar, T.G., Kumar, V.: Control of cooperating mobile manipulators.
Robotics and Automation, IEEE Transactions on 18(1), 94–103 (2002)

[24] Tedrake, R., Manchester, I.R., Tobenkin, M., Roberts, J.W.: Lqr-trees:
Feedback motion planning via sums-of-squares verification. Intl. Journal
of Robotics Research 29(8), 1038–1052 (2010)

[25] Yamashita, A., Arai, T., O., J., Asama, H.: Motion planning of multiple
mobile robots for cooperative manipulation and transportation. Robotics
and Automation, IEEE Transactions on 19(2), 223–237 (Apr 2003)


	Towards Coordinated Precision Assembly with Robot Teams
	1 Introduction
	2 Hierarchical Localization and Control Approach
	2.1 Sequential Composition of Sensors
	2.2 Failure Recovery
	2.3 Fleet Control
	2.4 Coordinated Mating of Holes and Fastener Insertion

	3 Experiments
	4 Results
	5 Insights and Conclusion


