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ABSTRACT
This work examines the design of legs for a walking mi-

crorobot. The parameterized force-displacement relationships of
planar serpentine flexure-based two degree-of-freedom legs are
analyzed. An analytical model based on Euler-Bernoulli beam
theory is developed to explore the design space, and is subse-
quently refined to include contact between adjacent beams. This
is used to determine a successful leg geometry given dimensional
constraints and actuator limitations. Standard comb drive actu-
ators that output 100µN of force over a 15µm bi-directional
throw are shown able to drive a walking gait with three legs on
a 1cm2 silicon die microrobot. If the comb drive suspensions
cannot withstand the generated reaction moments, an alternate
pivot-based leg linkage is proposed.

1 INTRODUCTION
Microscale devices has been an area of heavy research for

decades now, but only recently has there been much progress to-
wards complete microscale systems. The integration of sensing,
processing, and communication now allows autonomous sensor
motes in a distributed network. However, these are still passive
systems, capable of interacting with the environment only within
the area they have been placed. A key element lacking in these
microsystems is mobility. Microrobots coupling a method of lo-
comotion with such a mote can be conceived. These integrated
autonomous microrobots can be useful in a variety of surveil-
lance, exploration, and rescue tasks.

There are many proposed methods to enable microscale lo-
comotion. Research is underway to develop shuffling, flying,
and jumping microrobots. Shuffling robots rely on specific prop-
erties of the ground on which they move. Patterned active sub-
strates have enabled some of the smallest mobile devices, but do
not allow a fully integrated system and are incapable of inter-
acting with more general environments [1]. Flying is primarily
useful for traveling large distances, and often incorporates high
energy density hydrocarbon fuels for power [2]. However, such
systems are necessarily complex and often lack precise position-
ing. Jumping microrobots take their cue from insects in nature,
storing energy in an elastomer and releasing it quickly to launch
them several times their body length [3]. These systems too lack
precise positioning, generally using a random walk approach.

This work focuses on enabling walking motion in MEMS
microrobots. Walking refers to a method in which the weight of
the robot is supported on one set of legs as another set is moved
forward off the ground, then transferred to the second set. The
legs follow periodic non-slip motions. This approach was cho-
sen because it enables precise positioning and steering of micro-
robots on passive surfaces. It can also be effectively powered by
high voltage, low current solar cells. The primary limitation in
walking effectiveness is the step size of the legs, requiring sur-
faces to have roughness features smaller than that size scale.

A walking motion requires at least two dimensions of travel
at the foot: the “horizontal” translation which drives the robot
forward, and the “vertical” translation which lifts the leg and/or
robot from the ground so it can move into position for the next
stride. This generally calls for a leg system with at least two de-
grees of freedom. A walking microrobot with two single degree-
of-freedom legs was previously developed in [4]. It used solar
cells for power, with onboard processing for control. However, it
failed for several reasons. It used a complicated multi-step fab-
rication process that was often finicky and unreliable. Also, the
actuators driving the legs were incapable of providing the force
required to drag the robot body behind it.

This work begins to examine a walking microrobot that can
overcome these problems. In particular, the primary considera-
tion is a simpler fabrication process. Avoiding heavy process de-
velopment allows for more attention to mechanism design, with
quicker turnaround of design iterations. The design focuses on
planar two degree-of-freedom trapezoidal legs assembled out of
plane to generate the walking motion, and proceeds with a me-
chanical analysis of the linkages required for such a leg.

2 MEMS FABRICATION
A significant consideration in designing microscale systems

is how such a design can then be implemented. Microelectrome-
chanical systems (MEMS) technology employs a variety of semi-
conductor processing techniques to create mechanical devices.
However, due to process abilities and limitations, both device
and process design must be considered and developed simulta-
neously. There is often a trade-off in designing MEMS devices
between functionality and process steps. As more complex me-
chanical elements are desired, higher complexity processing is
needed. Process development is time consuming and expensive,
and can draw research focus away from device design. Thus,
simple but versatile process steps are desired.

The process used in this work is a one mask SOI process.
The mask is used to pattern photoresist through which the de-
vice layer on an SOI wafer is etched. This results in a constant-
thickness two dimensional pattern in the device layer. The buried
oxide is then etched away, undercutting the features in the device
layer and releasing some structures completely. Many structures
can be made using this process, including a variety of actuators
and linkages. Comb drives, gap closers, and thermal actuators
are all possible, along with two dimensional transmissions that
can enable more complex actuators such as inchworm motors.

While allowing for a rich set of planar geometries, the sin-
gle mask SOI process is severely limited by being constrained
to two dimensions. One way of overcoming this limitation is
by incorporating a post-processing assembly step, as explained
in [5]. Structures released in the device layer can be picked up,
rotated out of plane, and assembled into clamps in the device
layer. This “pick and place microassembly” process was de-
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Figure 1. An ideal trapezoidal leg consists of rigid members connected

by free pivots.

signed to replace numerous cleanroom fabrication steps with a
single assembly step to create three dimensional structures.

3 TRAPEZOIDAL LEG
The key mechanism presented in this paper is a two dimen-

sional trapezoidal leg, driven by two independently actuated lin-
ear comb drives. A schematic of such a leg is shown in Fig. 1.
The leg is attached to each comb drive at its bases, which move
horizontally. The bases are connected by linkages to the foot,
which provides the output motion. It is this linkage that will be
examined here in an attempt to effect the desired walking motion
at the foot.

3.1 Leg Linkage
An ideal linkage would consist of rigid beams connected by

ideal pivots to allow free rotation of adjacent members, as in Fig.
1. For such a design, the only design parameters impacting the
behavior are the lengthl of the linking beam and it’s angleθ
with respect to the line of actuation. However, pivots in general
are difficult to fabricate in planar MEMS processes, especially in
the single layer SOI processes mentioned above.

As an alternative, flexible beams can be used to provide the
structure with the requisite compliance. Due to the stiffness of
silicon, a single beam flexure requires excessive force to gen-
erate the desired motion, so a serpentine trifold beam design is
used (Fig. 2). In addition to the lengthl and angleθ, the design
space now includes as the widthw of the beams and the spacing
d between segments of the folded beam.

A folded beam flexure can be used to implement an effective
pivot to more closely approximate a real pivot. In a single layer
SOI device, a hinge becomes a cylinder-in-socket pivot. To keep
the cylinder from falling out of the socket, a loose serpentine
spring is used to connect the pieces, as in Fig. 3. The friction in
the pivot between the moving pieces can be drastically reduced

Figure 2. A model of an assemblable trifold flexural beam.

Figure 3. Pivots can be approximated by planar cylinder-in-socket joints,

with the segments held together by long serpentine springs.

by replacing the cylinder-in-socket pivot with a knife-edge pivot,
as in Fig. 4.

3.2 Foot motion
The output motion at the foot is controlled by the comb

drives attached to the bases. Common mode operation of these
comb drives results in the foot being actuated horizontally, while
differential mode operation causes vertical motion, as in Fig.
5. The leg acts as a transmission generating a periodic two-
dimensional cyclic motion from out-of-phase actuation of the
two comb drives. A similar actuator is seen in [6]. In turn, an-
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Figure 4. Knife-edge pivots minimize frictional forces impeding rotation.

Figure 5. The figure on the left shows the leg with the independent bases

actuated in, raising the foot, while the figure on the right shows the bases

actuated out, lowering the foot. If both bases are actuated in the same

direction, the foot simply translates.

tiphase operation of a pair of similar legs can be used to propel
a robot forward, as seen in Fig. 6. Each footstep sends the robot
forward the full throw of the comb drives, thus relating the speed
of the robot to the frequency at which the actuators are driven.
The height the foot is lifted each step sets the maximum rough-
ness of the surface the robot can navigate.

In designing such a leg, there are four quantities that need
to be considered. The forcesFx andFz are applied to the base
and foot, respectively, which undergo displacementsdx anddz.
It is the relationships between these that define the performance
of the motion system. The comb drive actuators must provide
sufficient forceFx over their range of motiondx to be able to lift
the distributed weight of the robotFz a distancedz. In an ideal
leg, with rigid members and ideal pivots, these relationships are
easily determined by geometry:

Fz = Fx tanθ, (1)

Figure 6. Two such legs operating out of phase can be used to propel a

robot forward along smooth ground.
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Figure 7. A simple beam with loading only at the edges

dz = −dx/ tanθ. (2)

However, with the flexures or non-ideal pivots described
above, the relationships are not so simple, and cross terms en-
ter the equations. It is then important to know what is being de-
signed for. As a starting point, standard library comb drives are
used. At 50V actuation voltage, they are capable of applying up
to 100µN force over 15µm of bi-directional travel. If three legs
are being used to support a 1cm2 microrobot die from a 300µm
thick wafer, each leg must support about 250µN, or alternately,
each linkage must provide up to 125µN vertical force.

4 LINEAR BEAM THEORY
The folded beam structures comprise individual simply

loaded Euler-Bernoulli beams connected at their ends. In this
first order approximation, a set of linear relations can be defined
between displacements, forces, and moments at opposite ends of
each simple beam. Consider a long thin member, loaded only
at the edges but free everywhere along its length, of lengthl ,
Young’s modulusE, and cross sectional inertiaI (= tw3/12 for
a rectangular cross section of width w and out of plane thickness
t). Adopting a sign convention as shown in Fig. 7, the applied
loads at either end in the directions indicated can be related to
the linear and angular displacements of the edges:

dlr = dll + ldφl +
l2

2EI
Ml −

l3

6EI
Fl l , (3)

dφr = dφl +
l

EI
Ml −

l2

2EI
Fl l , (4)

Mr = Ml − lFl l , (5)

Flr = Fl l . (6)

There are no longitudinal deflections or forces, namely:

dlr = dll , (7)

Flr = Fl l . (8)

These can be combined into a single matrix equation (similar
to [7]), relating the six quantities on the right end to those on the
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Figure 8. Two simple beams joined together.

left: 
dtr
dφr

Mr

Ftr
dlr
Flr

 =


1 l l2

2EI −
l3

6EI 0 0

0 1 l
EI −

l2
2EI 0 0

0 0 1 −l 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




dtl
dφl

Ml

Ftl
dll
Fl l

 . (9)

Letting the composite deflection/load vector

v =< dt,dφ,M,Ft,dl,Fl >,

this can be written

vr = U(l)vl ↔ vT
r = vT

l U(l)T . (10)

When two beams are rigidly connected, there must be con-
tinuity across the interface. In particular, the deflections must be
the same at the connected edges, and the forces and moments
must balance. If two beams are joined at an angleψ, as in Fig.
8, the deflection/load vector at the right end of beama in its la/ta
frame must be transformed to the corresponding vector at the left
end of beamb in the rotatedlb/tb frame. The angular displace-
mentdφ and momentM transform as scalars, and so remain un-
changed under rotations as expected. Meanwhile, the displace-
ments< dl,dt > and forces< Fl ,Ft > transform as vectors, and
must be rotated as such:(

dlb
dtb

)
=

(
cos(ψ) sin(ψ)
−sin(ψ) cos(ψ)

)(
dla
dta

)
. (11)(

Flb
Ftb

)
=

(
cos(ψ) sin(ψ)
−sin(ψ) cos(ψ)

)(
Fla
Fta

)
. (12)

Putting these together yields:

vb = R(ψ)va ↔ vT
b = vT

a R(ψ)T , (13)

5 Copyright c© 2006 by ASME



whereR=
cos(ψ) 0 0 0 −sin(ψ) 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 cos(ψ) 0 −sin(ψ)

sin(ψ) 0 0 0 cos(ψ) 0
0 0 0 sin(ψ) 0 cos(ψ)

 . (14)

It is clear that across a straight interface, the loads and dis-
placements must remain unchanged, and indeedR(0) = I . This
also demonstrates thatU(l1)U(l2) = U(l1 + l2), as expected.

Using these matrices, the static behavior of any piecewise
linear folded beam can be elegantly analyzed. Simply by start-
ing at an end and multiplying the relevant matrices for straight
lengths and angled junctions, the first order linear relationships
between the deflections and loads at either end of the structure
can be found as a 6x6 matrix. Boundary conditions can be in-
troduced as known values in the deflection/load vectors, and the
system can be reduced to a lower order equation.

5 TRIFOLD LEG LINKAGE
5.1 Mathematical Analysis

The matrix approach described above can now be used to
analytically derive the relationships betweenFx,Fz,dx, anddz in
the trifold beam linkage of Fig. 2. Starting from the base and
working along a beam to the foot:

vf oot = A(l ,θ,d) ·vbase, (15)

where

A(·)T = R(θ)TU(l)TR(90◦)TU(d)TR(90◦)TU(l)T ×
R(−90◦)TU(d)TR(−90◦)TU(l)TR(−θ)T (16)

A(·) = R(−θ)U(l)R(−90◦)U(d)R(−90◦)×
U(l)R(90◦)U(d)R(90◦)U(l)R(θ). (17)

This can be simplified by noting that the transverse and an-
gular displacements of the base, as well as the longitudinal and
angular displacements of the foot are zero. Also, overall leg equi-
librium and symmetry indicates that the moments, horizontal,
and vertical forces are equal at both ends of the linkage. That
is,

vf oot =


dz
0

Mr

−Fz
0

−Fx

 ,vbase=


0
0

Mr

−Fz
dx
−Fx

 . (18)

Thus only five unknowns remain, and three can be solved
for in terms of the other two. The required input forceFx, step
heightdz, and reaction momentM can then be expressed as linear
functions of the weight of the robot and the maximum throw of
the comb drives:

Fx =
1
D

[AFz− (24EI)dx] , (19)

dz=
1
D

[
Adx+

2l2d2(6l2 +14ld +d2)
EI

Fz

]
, (20)

M =
1
D

[
(4ld2(6l +5d)cos(θ)−6l2d(l +3d)sin(θ))Fz

−12EI(2dcos(θ)+ l sin(θ))dx] (21)

(22)

where for convenience

A = 12ld2cos(2θ)− (3l3 +6l2d−24ld2−8d3)sin(2θ),(23)

D = 12ld2sin(2θ)+(3l3 +6l2d−24ld2−8d3)cos(2θ)
−3l3−6l2d−24ld2−8d3. (24)

These relations are complicated, but still reveal some impor-
tant trends. These trends are made clearer when specific numbers
are used. Using a weight ofFz= 125µN per leg linkage, and a
base displacement ofdx= 15µm, these values can be determined
for a collection of geometries. These are plotted in Fig. 9 for both
d = 10 µm andd = 20 µm beam spacings. Of immediate note
is the significant impact of beam spacing on step height. In fact,
for a twenty micron spacing, the vertical stiffness is so low that
the leg itself can’t support the weight of the robot.

These graphs show the biggest tradeoffs are required force
vs. step height as a function of angle, and reaction moment vs.
step height as a function of length. Since the comb drives are de-
signed to output 100µN, an optimal angle of around 55◦ is seen,
with length needing to be chosen based on moment considera-
tions.

5.2 ANSYS Simulation
The validity of this model is explored using simulation of the

legs using finite element analysis (FEA). A parameterized 3-D
model of the trifold flexural linkage is created in SolidWorks then
exported to ANSYS for meshing and analysis. The simulation
is carried out using a nonlinear solver to account for possible
large deflections or buckling. Comparison with the mathematical
analysis above reveals reasonable agreement, generally within
10% as shown in Fig. 10. What is important to note is that the
FEA solution yields greater step sizesdzand lower input forces
Fx, and so the mathematical analysis generates a conservative
model.
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Deflection of foot HdzL, applied force HFxL, and reaction moment HML
under 15ΜN base displacement and 250ΜN load

320 340 360 380 400 420 440 L HΜmL2000

2200

2400

M HΜN.ΜmL

320 340 360 380 400 420 440 L HΜmL3100
3200
3300
3400
3500
3600

M HΜN.ΜmL
320 340 360 380 400 420 440 L HΜmL60

70

80

90

100

110

Fx HΜNL

320 340 360 380 400 420 440 L HΜmL60

70

80

90

100

Fx HΜNL
320 340 360 380 400 420 440 L HΜmL1

2
3
4
5
6

dz HΜmL 10Μm beam spacing

320 340 360 380 400 420 440 L HΜmL-22

-20

-18

-16

-14

-12

dz HΜmL 20Μm beam spacing

Figure 9. The deflection/load relations are plotted against the geometri-

cal parameters l and θ under a constant base displacement of 15µm and

load of 250µN on the foot. Four values of θ are used, 50◦, 55◦, 60◦, 70◦,

with 70◦ being the bottom line on each graph.

Deflection of foot HdzL and applied force HFxL
under 15ΜN base displacement and 250ΜN load
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Figure 10. The foot displacement (dz) and applied base force (Fx) are

plotted against length l for θ = 55◦ under a constant base displacement

of 15µm and load of 250µN on the foot. The line is the analytic model

response while the dots are the ANSYS simulation results.

One critical behavior that shows up in the simulation results
is the deformed shape of the leg flexure after loading. Both anal-
ysis and simulation assume that the serpentine beam elements
were independent, in that parallel beams do not interact. How-
ever, the simulation results demonstrate that there can be contact
between adjacent beams after loading, as in Figs. 11, 12.

Figure 11. The loaded trifold beam model is deformed through itself,

indicating a contact situation.

Figure 12. A view of the trifold linkage after loading. The deformed flex-

ure is clearly visible, demonstrating contact between adjacent beams.

5.3 Contact
The contact behavior of a trifold beam can be incorporated

into the analytical model through additional force and displace-
ment constraints. A corner collides with an adjacent unconnected
edge when their relative transverse displacements sum to the dis-
tance between the beams at that point, namely the beam spacing
less the width of a beam. Further deflection beyond that point
will keep those displacements constrained to sum to that dis-
tance. Each beam exerts a force (of equal magnitude) on the

7 Copyright c© 2006 by ASME
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Figure 13. A corner and an adjacent beam could collide.

other beam at that point; this force will be a discontinuity in the
force along the beam. That is, across the interface defining the
point of contact, the transverse force will differ from one edge to
the other in the direction away from the colliding corner.

Consider Fig. 13. If upon deflection, the corner CD contacts
the beam at point AB, then the following force and displacement
constraints are introduced:

dtA +dtC = s (25)

FtA +R = FtB (26)

−R−FtC = FlD (27)

Wheres is the distance between the beams andR is the force
they exert on each other. By labeling the deflection/load vector
at all contact points, these constraints can be added in to the set
of equations to complete the relationships. Unfortunately this
causes the analytic solution to the system to become in general
complicated and unwieldy, but the solution can still be used nu-
merically to analyze behavior. The same plots as in Fig. 9 are
now shown with contact conditions in 14.

It is interesting to see the difference contact makes on the
linkage behavior. The required input force drops slightly while
the reaction moment drops significantly. Also, the step size in-
creases drastically. These quantities are uniformly more desir-
able. Thus, if a design satisfies design requirements using the
more tractable no-contact model, the actual device will certainly
satisfy the requirements also.

6 PIVOT-BASED LEG LINKAGES
While the flexural legs are necessarily compliant, the ideal

legs should be vertically stiff with little rotational resistance. The
nonideal nature of the flexural leg linkages are especially evident
in the reaction moment generated at the clamped bases of a leg.

Deflection of foot HdzL, applied force HFxL, and reaction moment HML
under 15ΜN base displacement and 250ΜN load with contact
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Figure 14. The deflection/load relations are plotted against the geomet-

rical parameters l and θ∈ {50◦,55◦,60◦,70◦} (with 70◦ being the bot-

tom line on each graph) under a constant base displacement of 15µm and

load of 250µN on the foot. Contact between adjacent beams is taken into

account.

In fact, while a comb drive can generate sufficient force to drive
a microrobot, its suspension may twist under large applied mo-
ments. This in turn weakens the suspension vertically, potentially
resulting in the leg being driven into the substrate under load and
rendering it immobile.

An alternate structure was developed to overcome this lim-
itation. In keeping with the one mask SOI process, an enclosed
hinge cannot be fabricated. However, a planar cylinder-in-socket
joint as in Fig. 3 allows one segment to freely with regards to an-
other. Alternately, to minimize frictional losses arising from the
sliding of one surface past the other, a knife edge pivot (Fig. 4)
can be used instead. The disjoint sections of either pivot however
must be connected to prevent the inner element from escaping the
socket out of plane. A long angled folded beam flexure is used
for this purpose, providing a restoring force if the cylinder moves
out of plane. This flexure also provides a restoring moment as the
pivot is rotated. The angular spring constant of this flexure can
be determined in much the same way as the above analysis.

7 CONCLUSION
Using the analytical framework built on a matrix formula-

tion of Euler-Bernoulli beam theory, the performance of a class
of two degree-of-freedom walking legs was quantified. First or-
der analysis results proved to be more conservative than FEA
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simulation or the more refined model including contact behav-
ior, and so was used as a loose bound for estimating behavior.
Using these three methods, it was demonstrated that driving a
walking microrobot with flexural legs is a feasible goal. A paral-
lel development track with pivot-based legs also was shown to be
promising. The next step will of course be to test the structures
analyzed in this paper.
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