
An End-to-End System for Designing Mechanical Structures for

Print-and-fold Robots

Ankur M. Mehta and Daniela Rus1

Abstract— This work presents a script-based develop-
ment environment aimed at allowing users to easily design
and create mechanical bodies for folded plastic robots.
The origami-inspired fabrication process is inexpensive
and widely accessible, and the tools developed in this
work allow for open source design sharing and modular
reuse. Designs are generated by recursively combining
mechanical components – from primitive building blocks,
through mechanisms and assemblies, to full robots – in a
flexible yet well-defined manner. This process was used
to design robotic elements of increasing complexity up
to a multi-degree-of-freedom compliant manipulator arm,
demonstrating the power of this system. The developed
system is extensible, opening avenues for further research
ultimately leading to the development of a complete robot
compiler.

I. INTRODUCTION

Robots can come in a variety of form factors with
a number of uses, displaying potential to become in-
dispensable for purposes such as academic research,
educational outreach, or general household use [1]–
[3]. However, the power of robotics comes from cus-
tomizability in the system design. To enable the general
public to personally design and create individualized
robots, non-specialized users must be able to go from
problem specification to device fabrication rapidly and
repeatedly.

Though there are many computer aided design
(CAD) packages focusing on various stages of this
process, the creation of a robotic system still requires
a multitude of such tools, along with the specialized
skills needed to navigate each one. This currently
leaves robotics within a domain of experts. To bring
personalized robots into the homes of the general pub-
lic, the complete design process needs to be reworked.

This paper presents a toolbox-like system to simplify
and streamline the design and manufacture of printable
robot bodies. Mechanical structures are fabricated in an
origami-inspired process wherein precision patterned
and cut 2D sheets of plastic are folded into 3D ele-
ments. Designs for these structures are generated by
a collection of Python scripts which allow a user to
define complex geometries by hierarchically composing
simpler building blocks, starting from a library of basic
primitives. These designs are then fabricated using an
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inexpensive desktop paper/vinyl cutter. The resulting
process is intuitive, versatile, and extensible, allowing
quick and easy design of sophisticated robot bodies. It
uses cheap and easily available software and hardware
tools and raw materials, making it accessible to a casual
hobbyist.

The contributions presented in this paper include:

• a method of abstracting 2D fold patterns via
scripted objects,

• a composition paradigm to generate hierarchical
print-and-fold mechanical designs,

• a collection of mechanical elements forming a li-
brary of building blocks, and

• complex multi-degree-of-freedom robot bodies de-
signed using the aforementioned system.

II. ORIGAMI INSPIRED FOLDING

There are many tools and processes available to
be used in the fabrication of mechanical structures,
optimized for a variety of applications. When con-
sidering the task of creating custom designed robot
bodies, several concerns take precedence. The design
of mechanical structures often involves trial-and-error
or successive refinement. In order to facilitate such
a process, the fabrication method must be relatively
fast and cheap, while still versatile enough to produce
the variety of structures necessary for arbitrary robot
bodies.

A common rapid prototyping method is 3D printing,
made accessible to home users by products such as
the MakerBot [4] and popularized through user com-
munities like Thingiverse [5]. Structures are designed
by creating 3D solid models, which are then fabricated
through an additive manufacturing process using plas-
tic stock material. Current 3D printers can make a wide
variety of solid body rigid objects, but are significantly
limited in permitting structures with mechanical de-
grees of freedom. Furthermore, the additive process can
often take hours to build a complete model.

Instead, this work focuses primarily on an origami-
inspired print-and-fold process for creating 3D struc-
tures from 2D patterned sheets of plastic, as presented
in e.g. [6], [7]. Such patterns can be quickly printed
using an inexpensive desktop paper/vinyl cutter, with
raw material cheaply and readily available. This pro-
cess inherently allows for constrained motion by using
patterned folds as hinges. Similar to the diversity dis-
played by origami creations, the print-and-fold process



allows for a wide range of mechanical designs. This
process has already been used to manually design a
number of successful standalone robots [6]–[9].

III. DESIGN PRINCIPLES

To enable personal robotics to gain widespread trac-
tion, the process by which desired devices are designed
must be greatly simplified. With a potential target
audience of school children or the general public, the
system must be usable by those without a background
in engineering design. In particular, there are a number
of guiding principles to help translate users’ visions
into mechanical structures as easily and directly as
possible.

Most importantly, the system environment should be
intuitive, allowing an inexperienced user to easily un-
derstand and implement the design process. A “what
you see is what you get” (WYSIWYG) model is ideal,
wherein the starting state and all operations directly
correlate to their real-world implementation. Generated
designs should be easy to share, modify, adapt, and
extend. Free and open source tools are preferable to
expensive and esoteric computer aided design (CAD)
programs, and designs should be similarly unencum-
bered by proprietary standards.

Earlier work on origami inspired robotics [6]–[8], [10]
were lacking in one or more of those goals. Designs
are often manually drawn from scratch in sophisticated
2D CAD programs, and can be difficult to visualize as
3D objects. Most robots are created as monolithic inte-
grated designs, and so these issues are compounded as
designs grow in size and complexity.

The design package presented in this paper consists
of a collection of Python scripts that automate the
end-to-end process of designing and fabricating the
mechanical body of a folded plastic robot. The sim-
ple text-based representation of these designs enables
many of the same benefits of the Open Source Software
movement such as incremental modification, modular
reuse, and community based sharing of designs. Expert
users can generate new modules and edit the scripts
directly, while novice users need only be concerned
with designed modules as building blocks, connecting
them through a simple interface that hides the details
of the underlying software.

IV. DESIGN ENVIRONMENT IMPLEMENTATION

The system presented in this paper is outlined in
figure 1.

A. Software abstraction

3D folded plastic geometries are defined by their fold
patterns – the 2D drawings specifying edges to either
cut or fold. However, because of the non-intuitive
mapping between the fold pattern and its resulting 3D
geometry, mechanical elements are first abstracted into
their constituent components, hiding the underlying

Fig. 1. When creating a new print-and-fold design in the proposed
system, a designer needs only to be responsible for specifying the
blocks highlighted in orange: which subcomponents are required and
how their parameters are set, and what parameters and connections
to expose to higher designs.

Fig. 2. A robotic manipulator arm can be hierarchically decomposed
into modular building blocks; each block in the diagram represents
a component in the Python-based design system and can generate
the required design files for fabrication. Only the leaf nodes must
be coded by an expert designer – the rest can be implemented by
simply combining their constituent subcomponents.

2D fold pattern in favor of a building-block repre-
sentation as in figure 2. These components are self-
contained software abstractions of specific mechanical
parts represented in the system by Python objects, and
are responsible for generating their own fold patterns.
While expert users can edit the code directly to fine-
tune the resulting geometry, the typical user can instead
treat each component atomically as the physical entity
it generates, combining them in a modular fashion
similar to Lego or Tinkertoys.

This system enables the rapid design and fabrication
of robot bodies such as the one diagrammed in figure 2
and shown in figure 10. Given an initial component li-
brary populated with some expert-designed primitives,
a typical user need only assemble the components as
per a specified hierarchy graph in order to design the
complete mechanical structure.

B. Component library

The hierarchical design paradigm of the system pre-
sented in this work is meant to recursively build up
to the desired 3D geometry. The lowest level building
blocks of these designs are primitive components repre-
senting mechanical structures directly defined by their
2D unfolding. Derived components are then formed
by combining primitive components or other derived
components. Because primitives must be designed in
their entirety, their creation falls under the expert user
domain.



Each component implements a common set of meth-
ods defined in the parent class, providing a structured
implementation for parametrization and composition.
These methods can then be called from the casual
user domain to enable customization and extensibility
within the expert-defined bounds. The parameters of
a component are defined by the expert designer to
enumerate user-configurable degrees of freedom in
the geometric specification of a design, an example
of which is shown in lines 6-10 of listing 2. Typical
parameters include size, shape, or repetition counts.
The component designer is responsible for ensuring
that the assigned parameter values are then reflected
in the final design of the component. Each component
also specifies a list of connections – locations identified
by the designer to which other components can safely
be attached. This can be seen in lines 12-15 of listing 2.

C. Composition

A design implemented in this system is a constrained
combination of components (and is itself another com-
ponent); specifying a design in this system consists of
recursively composing the right collection of compo-
nents to generate the desired robot body. Composing
a new design requires the user to follow a prescribed
set of steps to generate the Python class representing
the new component. These steps could be carried out
by manually generating the required Python script, or
an automated user interface could generate the code
directly from user input.

The required subcomponents must first be identified
and collected, as in line 4 of listing 2. If any do not
yet exist in the library, they must be created either by
drawing a new primitive component or by composing
a new derived component in the same manner being
presented here.

By default, the parameter set of the new derived
component begins as simply a union of the parameters
of all its subcomponents. However, an assembled de-
sign often imposes constraints between related param-
eters of its constituent parts, and so these constraints
must be specified relative to the desired parameters of
the assembly. The final set of parameters must exactly
cover the available geometric degrees of freedom of
the composite design, and specify all the parameters
of the subcomponents. The parameters in listing 2 are
declared in lines 6-10, and set in lines 17-20.

Finally, the subcomponents must be attached to each
other along allowable connections to generate the final
geometry, as accomplished by lines 22-40 of listing 2.
As each subcomponent is actualized as a 2D unfolding
of the desired 3D structure, attaching two unfoldings
must result in a new planar unfolding of the composite
structure. With careful design, this can sometimes be
achieved by simply concatenating the two unfoldings
along a shared edge. Other times, however, a more

rigorous algorithm such as that presented in [11] must
be used to generate the composition.

D. Fabrication

Each component in this system is an instance of a
common parent class, stored as an executable Python
script. When run, this class calls a method to generate
the final 2D design file to be sent directly to the cutting
machine, thus providing the fabrication path for the
printable robot. The class also has methods to gener-
ate 3D representations to aid in the design process,
demonstrating the static and dynamic appearance and
behavior of the resulting structure. Instantiating the
final design consists of setting the required parameters,
generating a 2D design file, sending it to a cutter to
pattern a sheet of plastic, then folding it to the final 3D
geometry, using generated models for guidance.

V. RESULTS

The proposed system was used to design and fabri-
cate a number of mechanical structures.

A. Primitive components

There are many possible primitives, a subset of
which are presented below. They are typically limited
to simple structures; more complex structures can of-
ten be subdivided into compositions of these simpler
designs.

1) Basic shapes: The simplest non-trivial geometries
required to build 3D structures are convex polyhedra.
Building blocks such as cubes (shown in figure 3,
from the code in listing 1) and beams (shown in
figure 4) form the structural elements of most folded
plastic robots. The unfolded geometries are specified
by Python scripts as first presented in [9]: and encap-
sulated in the component framework presented above.
They are parametrized to allow for user specified ge-
ometries. For example, the length, diameter, number
of sides, and face angles can all be adjusted for a
beam component. The components also publish their
available connections – edges along which other com-
ponents are allowed to connect.

1 class Cube(Drawing):

2 def __init__(self, edge, top=True, bot=True):

3 Drawing.__init__(self)

4
5 r = Rectangle(edge, edge)

6 self.append(r, 'rm')

7 if top:

8 self.attach('rm.e0', r, 'e2', 'rt', 90)

9 if bot:

10 self.attach('rm.e2', r, 'e0', 'rb', 90)

11
12 self.renameedge('rm.e1', 'e1')

13 for i in range(4):

14 self.attach('e1', r, 'e3', 'r%d' % i, 90)

15 self.renameedge('r%d.e1' % i, 'e1')

Code Listing 1. A cube is formed by joining square faces at right
angles.



Fig. 3. The code to generate a cube creates the 2D fold pattern on
the left with cut edges in blue and folded edges in red. The resulting
folded structure is shown on the right. There is an extra overlapping
side panel to enable allowable connections on each of the four edges
on the top and bottom of the cube.

Fig. 4. The fold pattern of a beam with an angled face is shown
with available connections at either end of the beam highlighted in
green.

2) Joints: Solid components such as the above shapes
can then be combined in a number of ways to generate
the desired motion profiles for robot bodies. The sim-
plest joint does not require additional components at
all. Instead, two solids can simply be connected along
an unconstrained folded edge, thus allowing 1 degree
of freedom (DOF) rotational motion. A 2 DOF pivot
can be formed by combining solid components along
two orthogonal edges, or with a dedicated primitive
component as seen in figure 5. A more compliant
flexure can be created to allow for both rotational and
translational motion, as shown in figure 6.

A special type of joint can also be used to combine
components without permitting motion. Typically this
would be done by combining adjacent faces into a sin-
gle continuous sheet, but there are many cases where
the geometry does not permit that. Instead, a tab and
slot can be used to fix two disjoint faces relative to each
other. This can be used on a single component as well,
as seen in figures 5 and 7, allowing a folded structure
to rigidly hold its shape.

Fig. 5. A robust two degree of freedom pivot allows arbitrary
angular motion by forming two orthogonal pivots. Note the tabs
and slots added on to the component to join adjacent edges in the
folded structure.

Fig. 6. This flexural element permits longitudinal compression as
well as in-plane and out-of-plane rotations.

Fig. 7. A basic robotic finger element is simply composed of multiple
beams joined with simple folds along their available connections.
Again, tabs and slots are used to hold the structure together.

B. Derived components

1) Compound structures: The primitives from above
can be combined to make more complex mechanisms.
Joining two beams along an edge creates a hinge,
permitting the relative rotation of the two solids, akin
to a knuckle. A finger can be generated from a number
of these knuckles, as seen in figure 7, generated by the
code in listing 2.

1 class Finger(Component):

2 def defComponents(self):

3 ### Identify subcomponents

4 self.components.setdefault("knuckle", Beam())

5
6 def defParameters(self):

7 ### Declare parameters

8 # knuckle parameters inherited by default

9 self.parameters.setdefault("cnt", 2) #no. of knuckles

10 self.parameters.setdefault("len") #length of finger

11
12 def defConnections(self):

13 ### Define edges for connections

14 self.connections.setdefault("topedge")

15 self.connections.setdefault("botedge")

16
17 def setSubParameters(self):

18 ### Impose constraints on parameters

19 self.components["knuckle"].parameters["len"] = 1.0 *
20 self.parameters["len"] / self.parameters["cnt"]

21
22 def assemble(self):

23 ### Assemble the object

24 k = self.components["knuckle"]

25
26 # Insert the first knuckle

27 self.drawing.append(k.drawing, "k0")

28 # Identify the current edges of the finger

29 for e in ["topedge", "botedge"]

30 self.connections[e] = "k0.%s" % k.connections[e]

31
32 for i in range(1, self.parameters["cnt"]):

33 # Attach the next knuckle

34 self.drawing.attach(self.connections["botedge"],

35 k.drawing,

36 k.connections["topedge"],

37 "k%d" % i, FOLD)

38 # Update the bottom edge of the finger

39 self.connections["botedge"] =

40 "k%d.%s" % (i, k.connections["botedge"])

Code Listing 2. A simple finger is composed of a number of beam
components joined end-to-end.

Hybrid structures can also be designed from a collec-
tion of different primitives. By alternating cubes with
flexural joints, a compliant multi-DOF soft arm can be
quickly designed, as shown in figure 8.



Fig. 8. Joining sequential cube faces with flexural joints allows 3
DOF motion between each pair of cubes, creating a soft robot arm.
Additional components, namely the tendons and their slots, were
also added into the design to allow for actuation of the arm.

Fig. 9. A number of fingers joined to the edges of a cube forms a
gripping hand. A 3D printed model of the central cube, generated
alongside the 2D fold pattern and assembled into the structure during
the folding process as shown here, can provide rigidity to the device.

2) Robots bodies: These derived mechanisms can be
further refined and combined into complete robot bod-
ies. By attaching a number of fingers onto the edges of a
solid, a gripper is created as shown in figure 9. Variants
of the tabs, cube, and finger components were designed
to produce this more sophisticated hand structure.
Attaching this gripper onto the end of the compliant
arm from above then yields a highly controllable ma-
nipulator arm as shown in figure 10.

Designing this final complex robot took no more than
combining the relevant building blocks into structures
of ever increasing complexity, each step of the way
combining only a small number of previously designed
components to make the next mechanism. It is here that
the power of this system is evident. The first pass for
each derivative component took less than an hour to
design, code, print, and fold, with subsequent design
iterations happening much quicker. A full robot body
like the manipulator arm could be assembled from a
component library of only primitives in a small handful
of hours. If the library included any of the derivative
elements along the way, perhaps obtained through an
open source sharing community, the final design could
have been reached even faster. For an expert designer
familiar with the system, the primitives themselves are
similarly quick to implement.

Fig. 10. Putting a gripper at the end of a flexible arm yields a true
robot body, a multi-degree of freedom manipulator arm, shown here
being manually actuated.

C. Current component database

Over the course of creating bending, crawling,
rolling, and flying robots, a number of components
were designed and added to the component library
to form an ever expanding database of designs. Most
components in the library are quite simple, containing
only a few subcomponents. However, many contain
several levels of hierarchy, recursively building up from
set of primitives. In the current library, there are fewer
than 10 primitives defining solid objects, joints and
hinges, connectors, and specialized geometries such
as mounts and wings. However, simple mechanisms
form the first tier of compositional hierarchy, and full
featured robot bodies are already beginning to appear
at the second tier. More complex robots, such as that
as diagrammed in figure 2 and shown in figure 10,
may take more levels of nonetheless similarly simple
components.

VI. EXTENSIONS

The system as presented above is capable of generat-
ing designs for printable robots of arbitrary complexity
using the folded plastic fabrication process. However,
the system is not limited there. The scripted nature of
the underlying robot representation allows for addi-
tional functionality via further software development.

A. 3D printing

Though there are many benefits of the folded plastic
process, it is not optimal for some applications. In
particular, while lightness and flexibility is valuable for
creating moving parts, it is a detriment in situations
where rigidity is necessary, for example when consider-
ing energy efficiency in flying robots [9] or grip strength
in hand-like end effectors. However, since this system
produces models of the 3D structures generated by an
unfolding, it can also extract solid models to send to a
3D printer. For example, in figure 9, a 3D printed model
of the cube forming the palm is co-designed along with
the fold pattern. The hybrid process can produce robots
more versatile than either fabrication method alone.



Fig. 11. Mechanical bodies can include mounts for electromechanical
devices; complete robots are then formed by installing a processor
controlling servomotors to actuate the printed structures. Sensors can
also be incorporated to enable feedback control.

B. Electronics

Finally, to generate complete robots instead of robot
bodies, the electrical subsystem needs to be included
with the mechanical elements. In the robot examples
presented above, the designed degrees of freedom were
actuated by servomotors winding up cables tied to
body elements, as seen in figure 11. The mounts for
these servomotors, naturally, are designed as compo-
nents attached to the final body design. However, the
hardware controller, drivers, and application software
are currently ad-hoc solutions added manually (in the
case of the above, the servos are driven by an Ar-
duino or a GINA board [12] running custom written
firmware). Since the degrees of freedom of the robot
along with the specific drive actuators are specified
by the mechanical body design, it should be possible
to automatically design these components as well, in-
corporating electronic mounting and wiring into the
generated design files that get fabricated.

VII. CONCLUSIONS

A. Contributions

The primary contribution of this work is a new
end-to-end rapid design and fabrication paradigm
that specifies mechanical robot bodies by hierarchi-
cally composing simpler components. An abstraction
was developed allowing for mechanical components
to be described by scripts; a few designed primitive
components plus rules and algorithms for composi-
tion were then sufficient to generate a wide array of
robot mechanisms and bodies. This system was imple-
mented in Python and used to generate design files
for an origami-inspired plastic print-and-fold process.
A database of primitive components was generated and
used by the system to design and fabricate a number
of robot mechanisms of increasing sophistication and
complexity.

B. Future work

In addition to extending this system to create robot
designs of ever increasing functionality and complexity,
there are additional avenues for research opened up by
the work initiated herein.

1) Design decomposition: The basis for this system
is the hierarchical modular design of robots by non-
experts. However, there are many robot experts that
can and do design custom robots (see for example
[6]–[9]) to a much higher precision than achievable
by a general multi-purpose system. It then becomes
interesting to see whether it is possible to decompose
experts’ designs into parametrizable modules for use
in this system. Big data techniques could potentially be
applied to extract useful reusable design components
from complete designs, thus increasing the depth of
the component library and expanding the scope of
designable robots.

2) Automated recommendations: Further analysis of
generated robot designs could also reveal details of
engineering principles. By evaluating existing robot
structures, it might be possible to build a recommen-
dation engine into the design system, further reducing
the burden on a robot designer. As the corpus of
designed robots grows, so too does the engineering
knowledge contained in those designs, and the system
could evolve from a tool to realize conceptual designs
to a tool to propose new designs. Eventually, this leads
us down a path to a full fledged robot compiler, able
to produce complete robot designs from a specification
of the problem to be solved.
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