
PA MAN
ATTACKING ARM POINTER AUTHENTICATION

WITH SPECULATIVE EXECUTION

Joseph Ravichandran*, Weon Taek Na*, Jay Lang, Mengjia Yan
*Both authors contributed equally to this work.

1

$whoami

2

Joseph Ravichandran
1st Year PhD Student, MIT

Weon Taek Na
1st Year PhD Student, MIT

SW HWMicroarchitectural
Attacks

Memory Corruption
Attacks

3

SW HWMicroarchitectural
Attacks

Memory Corruption
Attacks

PACMAN

4

5

Attack on
Apple M1.

Contributions

1

Hardware bypass for
ARM Pointer

Authentication.

2

New way of thinking about
compounding threat

models.

3

The idea in 60 seconds.

6

Memory Corruption

7

Change Function
Pointer

Read/ Write
Memory

Arbitrary Code
Execution

8

Change Function
Pointer

Read/ Write
Memory

Arbitrary Code
Execution

Memory Corruption

Pointer Authentication
blocks changing pointers

9

Write function pointer
with forged hash

Read/ Write
Memory

Arbitrary Code
Execution

Memory Corruption

Just bruteforce it, right?

10

Key Insight:
Avoid crashes using

speculative execution!

11

Agenda

12

1 Background

2 High Level View

3 Data Attack

4 Instruction Attack

5 Analysis

Buffer Overflow

13

Buffer[0]

Buffer[1]

...

Function Pointer

Buffer Overflow

14

Buffer[0]

Buffer[1]

...

Function Pointer

Buffer Overflow
overwrites the

function pointer!

Let's fix this bug with Pointer Authentication.

15

ARM Pointer Authentication

16

PAC = crypto_fn(pointer, salt, key)

Buffer Overflow

17

Buffer[0]

Buffer[1]

...

Function PointerPAC

Buffer Overflow

18

Buffer[0]

Buffer[1]

...

Function PointerPAC

Buffer Overflow
corrupts the PAC

Invalid PAC means we crash!

GOAL
THE

Reveal the PAC for an
arbitrary pointer
without crashing.

19

Break PAC with Hardware Attacks

• Guess a PAC speculatively to prevent crashes

• Leak verification results via side channel

20

Speculative Execution

21

if (true)
 A
else
 B

Branch A

Branch
Speculate B

Undo B A

In Order

Speculative

Time

Microarchitectural
side effects NOT undone

We use side channels to transmit
the verification results of a pointer.

22

PACMAN Gadget

Threat Model

• Read/ write memory corruption bug

• Local code execution

• Can trigger PACMAN Gadget

23

Bird's Eye View

24

Run PACMAN Gadget
with guess

Write PAC guess
into memory with

existing software bug

Observe Load!

No Load

Correct

Incorrect

Data Gadget

if (condition):
 verified_ptr = check_pac(guess_ptr)
 load(verified_ptr)

25

Data Attack if (condition):
 verified_ptr = check_pac(guess_ptr)
 load(verified_ptr)

Correct PAC

26

Mispredict
Branch

Data Attack if (condition):
 verified_ptr = check_pac(guess_ptr)
 load(verified_ptr)

Correct PAC

27

Mispredict
Branch

PAC Check
Succeeds

Data Attack if (condition):
 verified_ptr = check_pac(guess_ptr)
 load(verified_ptr)

Correct PAC

28

Mispredict
Branch

PAC Check
Succeeds

Speculative
Load!

Data Attack if (condition):
 verified_ptr = check_pac(guess_ptr)
 load(verified_ptr)

Correct PAC

29

Mispredict
Branch

PAC Check
Succeeds

Speculative
Load!

Incorrect PAC
Mispredict

Branch

Data Attack if (condition):
 verified_ptr = check_pac(guess_ptr)
 load(verified_ptr)

Correct PAC

30

Mispredict
Branch

PAC Check
Succeeds

Speculative
Load!

Incorrect PAC
Mispredict

Branch
PAC Check

Fails

Data Attack if (condition):
 verified_ptr = check_pac(guess_ptr)
 load(verified_ptr)

Correct PAC

31

Incorrect PAC

Mispredict
Branch

Mispredict
Branch

PAC Check
Succeeds

Speculative
Load!

PAC Check
Fails

Speculative
Exception

Instruction Gadget

if (condition): #BR1
 verified_ptr = check_pac(guess_ptr)
 call(verified_ptr) #BR2

32

TARGET

Image: Apple ("Apple Unleashes M1")

The world's first desktop CPU
that supports Pointer Authentication.

33

Challenges of Real World HW

• No documentation of microarchitectural details.

• No high resolution timer.

• macOS is a difficult system to integrate attacks on.

34

Essentially, we had to reinvent the wheel.

Conjectured TLB Hierarchy

35

36

Conjectured TLB Hierarchy

37

Conjectured TLB Hierarchy

We insert a vulnerable
kernel extension.

38Image: Screenshot from macOS 12.3

Experiment Testbed:

PAC Oracle Accuracy

� 	 ��
����������������

��

	��

����
��
��

��
��

�

���

� 	 ��
����������������

��

	��

����

��
��

��
��

�

���

����������
� ���������
�

Data Instructions

39

Under the PACMAN kext, we find each run takes 2.69ms.

This will likely be longer for real kernel code.

40

We can bruteforce an entire 16-bit PAC (from
0x0000 to 0xFFFF) in under 3 minutes.

XNU-8019.80.24

Data
Gadgets

Instruction
Gadgets

Total

13,867 41,292 55,159

41

This list is not exhaustive, and no exploitability analysis was performed.

PACMAN Gadgets are readily available in large codebases.

More in the Paper!

42

Reverse Engineering
Experiments

Countermeasures

Example jump2win C++
Attack

CPU Cache Details

Timers on M1

TLB Details

And more!

PacmanOS
A Rust-based bare metal
environment for performing experiments.

43

44

SW HW
PACMAN

45

PACMAN: Attacking ARM Pointer Authentication with Speculative Execution

46

PACMANATTACK.COM

@0xjprx
@weon_taek_na

Follow us on Twitter!

