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Attack on 
Apple M1.

Contributions

1

Hardware bypass for 
ARM Pointer 

Authentication.

2

New way of thinking about 
compounding threat 

models.

3



The idea in 60 seconds.
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7

Change Function 
Pointer

Read/ Write 
Memory

Arbitrary Code 
Execution



8

Change Function 
Pointer

Read/ Write 
Memory

Arbitrary Code 
Execution

Memory Corruption

Pointer Authentication 
blocks changing pointers



9

Write function pointer 
with forged hash

Read/ Write 
Memory

Arbitrary Code 
Execution

Memory Corruption



Just bruteforce it, right?
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Key Insight: 
Avoid crashes using 

speculative execution!
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Agenda
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1 Background

2 High Level View

3 Data Attack

4 Instruction Attack

5 Analysis



Buffer Overflow
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Buffer Overflow
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Buffer[0]

Buffer[1]

...

Function Pointer

Buffer Overflow 
overwrites the 

function pointer!



Let's fix this bug with Pointer Authentication.
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ARM Pointer Authentication
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PAC = crypto_fn(pointer, salt, key)



Buffer Overflow
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Function PointerPAC



Buffer Overflow
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Buffer[0]

Buffer[1]

...

Function PointerPAC

Buffer Overflow 
corrupts the PAC

Invalid PAC means we crash!



GOAL
THE

Reveal the PAC for an 
arbitrary pointer 
without crashing.
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Break PAC with Hardware Attacks

• Guess a PAC speculatively to prevent crashes 

• Leak verification results via side channel
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Speculative Execution
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if (true) 
    A 
else 
    B

Branch A

Branch
Speculate B

Undo B A

In Order

Speculative

Time

Microarchitectural 
side effects NOT undone



We use side channels to transmit 
the verification results of a pointer.
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PACMAN Gadget



Threat Model

• Read/ write memory corruption bug 

• Local code execution 

• Can trigger PACMAN Gadget
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Bird's Eye View
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Run PACMAN Gadget 
with guess

Write PAC guess 
into memory with 

existing software bug

Observe Load!

No Load

Correct

Incorrect



Data Gadget

if (condition): 
  verified_ptr = check_pac(guess_ptr) 
  load(verified_ptr)
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Data Attack if (condition): 
  verified_ptr = check_pac(guess_ptr) 
  load(verified_ptr)

Correct PAC
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Mispredict 
Branch



Data Attack if (condition): 
  verified_ptr = check_pac(guess_ptr) 
  load(verified_ptr)

Correct PAC
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Data Attack if (condition): 
  verified_ptr = check_pac(guess_ptr) 
  load(verified_ptr)

Correct PAC
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Data Attack if (condition): 
  verified_ptr = check_pac(guess_ptr) 
  load(verified_ptr)

Correct PAC
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Data Attack if (condition): 
  verified_ptr = check_pac(guess_ptr) 
  load(verified_ptr)

Correct PAC
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Data Attack if (condition): 
  verified_ptr = check_pac(guess_ptr) 
  load(verified_ptr)

Correct PAC
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Incorrect PAC

Mispredict 
Branch

Mispredict 
Branch

PAC Check 
Succeeds

Speculative 
Load!

PAC Check 
Fails

Speculative 
Exception



Instruction Gadget

if (condition): #BR1 
  verified_ptr = check_pac(guess_ptr) 
  call(verified_ptr) #BR2
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TARGET

Image: Apple ("Apple Unleashes M1")

The world's first desktop CPU 
that supports Pointer Authentication.
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Challenges of Real World HW

• No documentation of microarchitectural details. 

• No high resolution timer. 

• macOS is a difficult system to integrate attacks on.
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Essentially, we had to reinvent the wheel.



Conjectured TLB Hierarchy
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Conjectured TLB Hierarchy
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Conjectured TLB Hierarchy



We insert a vulnerable 
kernel extension.

38Image: Screenshot from macOS 12.3

Experiment Testbed:



PAC Oracle Accuracy
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Data Instructions
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Under the PACMAN kext, we find each run takes 2.69ms. 

This will likely be longer for real kernel code.
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We can bruteforce an entire 16-bit PAC (from 
0x0000 to 0xFFFF) in under 3 minutes.



XNU-8019.80.24

Data 
Gadgets

Instruction 
Gadgets

Total

13,867 41,292 55,159
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This list is not exhaustive, and no exploitability analysis was performed.

PACMAN Gadgets are readily available in large codebases.



More in the Paper!
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Reverse Engineering 
Experiments

Countermeasures

Example jump2win C++ 
Attack

CPU Cache Details

Timers on M1

TLB Details

And more!



PacmanOS
A Rust-based bare metal 
environment for performing experiments.
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SW HW
PACMAN
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PACMAN: Attacking ARM Pointer Authentication with Speculative Execution
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PACMANATTACK.COM

@0xjprx
@weon_taek_na

Follow us on Twitter!


