
EntryBleed:
A Universal KASLR Bypass against KPTI on Linux
William Liu
MIT CSAIL

Cambridge, MA, USA
wliu1@mit.edu

Joseph Ravichandran
MIT CSAIL

Cambridge, MA, USA
jravi@mit.edu

Mengjia Yan
MIT CSAIL

Cambridge, MA, USA
mengjiay@mit.edu

ABSTRACT
For years, attackers have compromised systems by developing ex-
ploits that rely on known locations of kernel code and data segments.
KASLR (Kernel Address Space Layout Randomization) is a key mit-
igation in modern operating systems which hampers these attacks
through runtime randomization of the kernel image base address.
KPTI (Kernel Page Table Isolation) is another defense mechanism,
originally introduced to defend against the 2018Meltdown attack by
unmapping kernel addresses during user code execution. This secu-
rity mechanism makes it harder for attackers to leak kernel address
mappings through micro-architectural side channels. However, a
few pages for system call and interrupt handling were exempted
from isolation for the sake of user to kernel context transitions.

We present the EntryBleed vulnerability (CVE-2022-4543) as a
universal bypass against the KASLR protection mechanism through
a combination of micro-architectural side channels and design flaws
in the KPTI mitigation on Intel CPUs. We demonstrate that the bug
we identified can accurately de-randomize the kernel address space
within a second on modern Intel CPUs in both physical host and
hardware-accelerated virtual machine environments. We then pro-
vide a root cause analysis to locate the core micro-architectural
behaviors that enable EntryBleed, both on physical and under vir-
tualized environments. Furthermore, we propose a performant mit-
igation based closely upon a pre-existing KASLR hardening mech-
anism. If left unpatched, attackers will be able to easily bypass
KASLR, greatly lowering the barrier for exploit development and
increasing the risk of serious threats against the Linux operating
system.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and counter-
measures; Operating systems security.

KEYWORDS
micro-architecture, side-channel, Linux kernel, ASLR, KPTI

ACM Reference Format:
William Liu, Joseph Ravichandran, and Mengjia Yan. 2023. EntryBleed: A
Universal KASLR Bypass against KPTI on Linux. In Hardware and Archi-
tectural Support for Security and Privacy 2023 (HASP ’23), October 29, 2023,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HASP ’23, October 29, 2023, Toronto, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1623-2/23/10.
https://doi.org/10.1145/3623652.3623669

Toronto, Canada. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3623652.3623669

1 INTRODUCTION
Traditionally, low-level security research has focused on memory
and thread safety [29]. Researchers studied attacks and defenses
against memory bugs like buffer overflows or use-after-frees and
concurrency bugs like race conditions. An attacker’s goal is to
corrupt program memory and hijack its execution flow to gain
more privileges in a victim’s device.

With the discovery of theMeltdown [22] and Spectre [21] attacks
in 2018, micro-architectural vulnerabilities came to the spotlight.
These bugs do not result from programming errors, but rather from
hardware design choices emphasizing aggressive performance op-
timizations. They mostly lead to side channels, i.e., attacks which
leak sensitive system secrets through measurements of external and
unintended side-effects of program behavior. For example, specula-
tive execution allows instructions to execute transiently ahead of
time in the CPU pipeline even if these instructions are illegal from a
permission (Meltdown) or control flow (Spectre) perspective. While
the hardware has a built-in rollback mechanism, it fails to rewind all
modified micro-architectural states, leaving unintentional side ef-
fects that serve as sources of information leakage. Leaked secrets in-
clude cryptographic private keys [27], secure enclave contents [30],
and KASLR layout [22].

Note that, among the secrets that can be leaked via micro-
architectural attacks, KASLR layout is of special importance due to
its role in kernel hardening, as it is a resilience measure against soft-
ware exploits. In fact, Meltdown [22] can be used to leak sensitive
program data across security boundaries, including kernel pointers
that could lead to a KASLR bypass. This paper’s EntryBleed attack
reveals TLB-resident kernel virtual addresses which can deran-
domize KASLR layout under the protection of KPTI, an important
memory isolation mechanism between kernel and userspace as well
as a KASLR hardening feature in the post-Meltdown era.

1.1 KASLR Security
KASLR [11] is an important security feature that randomizes the
layout of kernel memory regions (including code, the heap, the
kernel stack, etc.) on each reboot. The Meltdown attack led to ma-
jor security complications as it trivially broke this randomization
barrier for attackers seeking to exploit memory corruption vulner-
abilities. In particular, Meltdown relies on the shared page tables
(further discussed in Section 2.1) between kernel and userspace.
With this sharing, the CPU can continue its aggressive speculative
execution across privilege boundaries as long as any requested
address is resolvable by the MMU (Memory Management Unit).

https://doi.org/10.1145/3623652.3623669
https://doi.org/10.1145/3623652.3623669
https://doi.org/10.1145/3623652.3623669

HASP ’23, October 29, 2023, Toronto, Canada William Liu, Joseph Ravichandran, and Mengjia Yan

The urgent need to address this vulnerability led to the current
state-of-the-art mitigation known as KPTI (Kernel Page Table Iso-
lation). This security mechanism separates kernel and user page
table entries. As a result, upon switching between privilege levels,
the OS is required to switch its top-level page table pointer. Most
commercial operating systems (such as Windows) have adopted
similar approaches [19] in an attempt to stop micro-architectural
attacks like Meltdown. Since most production operating systems
utilize KPTI as a hardening mechanism, a potential failure in KPTI
to protect against KASLR bypasses has serious security implications
for standard user and organizational threat models.

Unfortunately, many have made overarching assumptions about
the security of KPTI, overlooking that certain classes of micro-
architectural attacks are still applicable as a bypass against KASLR
in spite of KPTI. Even as of December 2022, the prominent security
research group Google ProjectZero [18] wrote that KPTI mitigates
prefetch attacks [14] across privilege boundaries. We show that this
presumption is incorrect with the EntryBleed attack.

1.2 EntryBleed
We recognized a design flaw in Linux KPTI related to insufficient
isolation between the userspace and kernelspace addresses. Specifi-
cally, as the OS needs to handle exceptions, interrupts, and syscalls
from userspace, there are still tiny stubs of kernel addresses mapped
into user page tables, serving as the entry and exit portal for user-
land code. We refer to this code as a trampoline region. We hy-
pothesized that the trampoline region could be a leakage source for
a micro-architectural-based KASLR bypass. Based on this hypothe-
sis, we extended the prefetch-based side channel attack to construct
a universal KASLR bypass. Our attack is resilient to normal operat-
ing system noise, does not require per-system configuration tuning,
and works within a second.

An especially interesting question is the true root cause of this
vulnerability on both physical hosts and hardware-accelerated VM
environments. We found that in both contexts, the attack works
because immediately before returning back from kernelspace to
userland code, the TLB caches the page translation for the trampo-
line addresses. As such, the TLB states can then be inspected later
in userspace via a prefetch side channel to leak the KASLR layout.

Furthermore, it is of interest to understand how EntryBleed
works in a hardware-accelerated VM environment, especially how
the micro-architectural side effects survive across guest-host con-
text switches.We experimentally found this to be due tomodern ISA
optimizations on virtualized MMUs. For the purposes of this project,
the scope for the VM-related analysis focuses on Intel VT-x exten-
sions utilized in the KVM hypervisor environment, with special
emphasis on the MMU optimizations EPT, VPID [17], and shadow
paging, as these features are extremely common in personal and
commercial computing environments. Additionally, since this vul-
nerability is still unpatched and exploitable in the wild, we propose
an effective and performant mitigation based on pre-existing work
on KASLR hardening.

Our Contributions. As of now, we have made the following con-
tributions.
• We discovered Entrybleed, a security issue which affects current
production kernels.

• We present a study of the root causes of EntryBleed in both bare
metal and hardware accelerated virtualized environments.

• We provide a potential fix to this systematic vulnerability that
aims to also be performant, based closely upon the pre-existing
FG-KASLR [4] mitigation.

Disclosure. RedHat has publicly acknowledged EntryBleed’s
threat to KPTI (designated under CVE-2022-4543) [16], and other
members of the security community have managed to cross-verify
its success, as seen in the KASLD repository [5] for documenting
KASLR bypasses.

Outline. Section 2 provides important pre-requisite knowledge
for the EntryBleed attack. Section 3 describes the methodology
to which we discovered the systematic flaw in KPTI and how we
designed our attack along with a root cause analysis. Section 4
follows with our experimental verification of EntryBleed and Sec-
tion 5 then provides data on our POC’s performance, accuracy,
runtime, and behavior across a variety of Intel CPUs as well as
Linux kernels. We provide metrics for its behavior under different
hardware-accelerated VM configurations to further our root cause
analysis. Section 6 summarizes the worrying implications of this
attack and suggests avenues of potential future research. Section 7
discusses our variation of the pre-existing FG-KASLR mitigation as
a defensive measure, and Section 8 concludes our work.

2 BACKGROUND
2.1 Virtual Memory and Paging
To support process isolation, program portability, and memory op-
timizations, most CPUs support concepts known as virtual memory
and paging. Rather than allowing programs to work directly with
physical memory provided by DRAM, operating systems abstract it
away with virtual addresses mapped to real addresses by the under-
lying hardware MMU. As this map is also stored in main memory,
a direct translation structure would be extremely inefficient.

The concept of multi-level paging resolves this aforementioned
inefficiency. On x86_64, virtual addresses are split into 4 or 5 sec-
tions, in which bits from each section act as an index into an array
known as a page table. The address for the first section’s page table
is in the CR3 register [17]. Each index stores the physical address
of the array for the next level’s page table given the current level’s
index (along with metadata related to memory properties). The final
section’s page table stores physical addresses representing either
a 4KB, 2MB, or 1GB region of contiguous memory for the virtual
address. This multi-level address translation design allows for many
optimizations, and even saves memory as page table entries (along
with its associated memory) can be populated on demand.

Translation Lookaside Buffer. The above design works well for
memory efficiency and abstractions but has one major flaw: each
virtual memory access requires 3 to 5 lookups in DRAM (depending
on the size of the target page), each of which takes hundreds of
cycles. To address this issue, each CPU core maintains a structure
known as the TLB, or Translation Look-Aside Buffer, where vir-
tual addresses are mapped to their direct physical addresses. This
structure fills up based on successful MMU resolutions of virtual
addresses and can automatically evict or evict based on execution

EntryBleed: A Universal KASLR Bypass against KPTI on Linux HASP ’23, October 29, 2023, Toronto, Canada

of specific x86_64 instructions, which the OS utilizes to maintain
memory coherency.

2.2 Address Randomization
ASLR (Address Space Layout Randomization) is a common user-
land and kernel security feature enabled on all modern operating
systems, in which the memory layout of programs is scrambled per
run or boot. Before this mitigation, attackers could just hardcode
virtual addresses to desirable memory targets in their exploits. The
added factor of randomization often requires attackers to achieve a
leakage primitive. Exploits that work independently of ASLR, or
without much knowledge of the virtual address space, are also a
possibility, but much less common. Aside from greatly increasing
attack complexity, it can even neutralize exploitability depending
on the bug.

However, in practice, the randomization only happens at the
granularity of program regions such as the heap, stack, or binary
image. Operating systems also impose a limit on the randomization
granularity by ensuring that program regions remain within certain
address ranges. For example, the Linux kernel’s code and data are
mapped at a 2MB boundary; combined with its allowed virtual
address range, the total randomization entropy is only 9 bits [20] [6].
While the entropy is somewhat low, an exploit that cannot bypass
KASLR would only work in 1

512 attempts (assuming a reliance on
only kernel data and code like in ROP chain attacks), which is much
less dangerous and more easily detectable than a fully stable exploit.
Hence, some security researchers have been interested in bypassing
KASLR through micro-architectural side-channels, such as using
Meltdown [22] and the double page fault attack [15].

2.3 Timing and Prefetch Side-Channels
Timing side-channels are vectors which attackers exploit to deduce
secrets based on operating compute time that are data or input
dependent. A very common toy example is the implementation
of a naive memcmp for a password checker: as soon as one char-
acter is wrong, the function returns false. This password checker
takes longer to finish if an attempt is more correct, thereby making
runtime into an oracle for attackers, allowing them to derive the
password byte by byte.

Prior work has shown that various micro-architectural structures
can be used to construct side channel attacks. For example, CPUs
maintain a hierarchy of memory caches to cache contents in groups
of 64 or 128 contiguous bytes known as “cache lines.” The CPU
cache has long been used as a vector for side channels, as seen in
the targeting of the L1 as well as L2 cache [27], the LLC cache [23],
and full cache hierarchy in the FLUSH+RELOAD attack [31]. This is
mainly because clear timing differences arise when measuring data
accesses that are active in different levels of the cache hierarchy
instead of just DRAM. Though less popular than caches, another
micro-architectural structure for side-channels is the TLB. It has
been used for side channels in the context of targeting SGX under
hyperthreading [30], with the help of machine learning to deduce
a victim’s memory access patterns [12], or, in our case, in tandem
with prefetching.

Prefetch Attack. For performance programming reasons, the ISA
allows users to preemptively cache virtual memory with a family

of instructions known as prefetch instructions. These instructions
come with a known measurable micro-architectural side effect
detectable within the granularity of CPU cycles. A given prefetch
instruction will take longer depending on whether the prefetched
address is mapped or not. Additionally, trying to prefetch an invalid
or kernel memory address will never cause any architecturally
visible exceptions, so there is no penalty for trying to prefetch
a kernel address from user context. This technique is called the
prefetch attack and a known bypass against standard ASLR [14].

3 THE ENTRYBLEED ATTACK
We now discuss the methodology for discovering the “EntryBleed”
bug, inwhichwe study the design of themicro-architectural defense
KPTI [7] along with a source analysis of its implementation. We
then provide our systematic approach to verifying the vulnerability,
followed by a root cause analysis.

3.1 A Security Vulnerability in KPTI
KPTI is a defense technique that is introduced to mitigate Melt-
down [22] and was believed to be effective towards prefetch at-
tacks [18]. It works by isolating kernel and user page tables. Previ-
ously, most systems used a shared kernel and userspace page-table
scheme, where the two page tables were separated by only a per-
mission bit in the same page table structure. However out-of-order
execution in some CPUs simply ignored the permission bit during
transient execution in the pipeline [22], allowing attackers to mea-
sure micro-architectural side-effects related to higher-privileged
code and data. By isolating their page tables completely with KPTI
(as shown in Figure 1a), many micro-architectural attacks which
leak secrets from the kernel would no longer work as the CPU is
unable to pre-emptively process untranslatable addresses.

Figure 1: (a) is the ideal representation of KPTI, in which
userland and kernel page tables are completely separated. (b)
is the reality, as the userland needs to have kernel trampo-
lines for proper OS functionality.

However, we found there are noticeable points of isolation fail-
ure in both its design documentation and its implementation in
Linux. When executing in userspace, a minimal subset of kernel
addresses is still mapped for the sake of trampolining execution
into the kernel when handling interrupts, exceptions, and syscalls.
This region mostly serves as a way for userland to enter and exit
kernelmode, and its mapping is available in the userspace (as shown
in Figure 1b). Indeed, in the Linux kernel source, the address of
the syscall handler entry_SYSCALL_64 is mapped into the LSTAR
register in the function syscall_init() and is available in this

HASP ’23, October 29, 2023, Toronto, Canada William Liu, Joseph Ravichandran, and Mengjia Yan

trampoline region between kernel and userspace [2]. The LSTAR
serves as the MSR (Model-Specific Register) which informs the CPU
of the instruction pointer to jump to upon syscall invocations [17].

Additionally, modern ASLR design only randomizes the start of
different sections (such as program code, heap, stack, etc.). Because
the syscall handler is part of kernel code, its randomized address
will be at a constant offset to every other address in the kernel
image. As a result, leaking the syscall handler’s address would reveal
the address of everything else in the kernel, breaking KASLR and
rendering KPTI an ineffective mitigation against prefetch attacks.

It must be noted that we were not the first to make this observa-
tion of this weakness in KPTI’s isolation. The EchoLoad [6] micro-
architecture attack, which relied on load stalls as a side-channel
vector, noticed this as well. There have also been successful Melt-
down exploits against this specific region in both Windows from
BlueFrost Security Labs [10] and MacOS from RET2 [9]. Indeed,
the paper that introduced the basis for KPTI [13] also noted this
problem. To our knowledge, we are the first to use the prefetch side
channel to exploit this vulnerability on the latest Intel KPTI-enabled
Linux kernel and virtualized environments.

3.2 Attack Strategy
From the above analysis, one can theorize the following attack
scenario as a universal KASLR bypass from an unprivileged user
(Figure 2).

• Cache the syscall handler in the TLB by making a
syscall from userspace. Recall that a successful virtual
to physical address translation will result in TLB caching.
Upon returning from kernel space, the CPU still needs to
execute a series of epilogue instructions to return back to
userspace, forcing this handler to remain cached in the TLB.
This works despite the effects of a TLB flush caused by the
user to kernel page table register switch.

• Guess the kernel address for entry_SYSCALL_64 and
prefetch it. Any address in the shared page table region
should work too. As mentioned earlier, this instruction has
noticeable side effects on execution latency based onwhether
the address is cached in the TLB.

• Iterate through all possible virtual addresses for the
syscall handler based on the virtual address range
for the kernel image, logging the execution cycles of
prefetch for each. The shortest measured latency implies
that the virtual address is in the TLB, and is the address of
the syscall handler page.

Figure 2: Visualization of the EntryBleed attack strategy.

To properly calculate CPU cycle latency, one can rely on the
rdtscp instruction, which returns the value of a CPU clock cycle
counter (the finest grained timer accessible to users of any privilege).
Additionally, optimizations can be applied to the possible address
space based on an analysis of Linux kernel memory mapping, and
out of order execution scenarios that inaccurately skew the data can
be prevented with serializing instructions like cpuid or mfence.

3.3 Root Cause Analysis
Aside from the design flaw discussed in Section 3.1, the root cause
of this attack is simple. Looking at the code for entry_SYSCALL_64
in arch/x86/entry/entry_64.S in the Linux source tree (version
6.0) [2], we can see that this part of kernel code starts and ends
execution when the CR3 register is still holding the user’s page
table. Hence, the effects of the CR3 switch into kernel space address,
which should flush the entire TLB, becomes nullified by the final
switch back into user space CR3, thereby keeping this section of
memory cached back into the TLB. This loss of state in the TLB is
further avoided by the fact that this page is marked with the global
bit for performance reasons, which is an x86 feature to avoid TLB
flushes on specified pages during a root page table pointer switch.
Overall, this type of behavior cannot be easily patched from the
entry handler’s perspective due to its need to start somewhere in
user space to trampoline into the kernel, nor can it easily be patched
in the hardware level without some serious modification to the ISA
in regards to prefetch semantics.

As mentioned in the introduction, this micro-architectural at-
tack also functions just as well when under hardware virtualization
(specifically tested on Intel VT-x). The root cause is of the same
reason, but the functionality of this attack even when faced with
VM exits during the side-channel procedure is an interesting obser-
vation we made that will be discussed later in Section 5.4.

4 EXPERIMENTAL VERIFICATION
To verify the functionality of our proposed micro-architectural
attack, we utilized Intel-based systems ranging from 4th generation
Haswell architecture to 9th generation Coffee Lake architecture.
We did not test chips 10th generation and onwards as they have
hardware mitigations against Meltdown built in [8]. With these
mitigations Linux automatically disables KPTI; a prefetch attack
is already known to work in this case as now the kernel and user
share one page table again [14] [18].

The EntryBleed exploit was tested on Linux kernel builds with
hardening settings standard for both personal and cloud computing
purposes, including KPTI and KASLR, the two main victims in this
attack. Several of systems were also popular Linux distributions,
equipped with built-in micro-architectural hardening measures
such as retpolines and the latest Intel microcode updates. We also
relied on Linux’s KVM hypervisor driver to test the attack under
hardware accelerated virtualization environments.

To accurately replicate the scenario of an attacker attempting
to perform LPE (Local Privilege Escalation), we created a standard
low-privileged user account and ran code that performed the attack
described previously in Section 3.2.

We then transferred the attack binary over and ran it to leak the
address of entry_SYSCALL_64, and confirmed the results through

EntryBleed: A Universal KASLR Bypass against KPTI on Linux HASP ’23, October 29, 2023, Toronto, Canada

 0xffffffff80000000 0xffffffffc0000000
Address

60

80

100

120

140

160

180

Pr
ef

et
ch

 L
at

en
cy

 (C
pu

 C
yc

le
s)

0xffffffff8a400000, 58

(a) 5.4.0-146-generic + Intel i5-4590

 0xffffffff80000000 0xffffffffc0000000
Address

60

80

100

120

140

160

Pr
ef

et
ch

 L
at

en
cy

 (C
pu

 C
yc

le
s)

0xffffffffb7600000, 50

(b) 5.15.0-67-generic + Intel i7-6700

 0xffffffff80000000 0xffffffffc0000000
Address

40

60

80

100

120

140

Pr
ef

et
ch

 L
at

en
cy

 (C
pu

 C
yc

le
s)

0xffffffffa1600000, 35

(c) 5.15.0-83-generic + Intel i7-9750H

Figure 3: Visualization of prefetch CPU cycles when side-channeling for the address of entry_SYSCALL_64

Table 1: Successful Experimental System Configurations
* Cloud service (Digital Ocean) did not provide information for exact CPU model

CPU Model Kernel Build System Environment Tested under KVM
Intel i5-8265U Arch 6.0.12-hardened1-1-hardened PC Yes
Intel i7-9750H 5.15.0-83-generic/custom 5.18.3 PC Yes
Intel i7-9700F 6.0.12-1-MANJARO PC Yes
Intel i7-6700 5.15.0-56-generic Server No
Intel i5-4590 5.4.0-146-generic Server No

Intel Xeon CPU E5-2640 5.10.0-19-amd64 Cloud No
(DO) Intel Xeon Skylake∗ 5.4.0-139-generic Cloud No

the /proc/kallsyms pseudo-file interface as a higher privileged
user. As discussed in Section 3.1, the offset of entry_SYSCALL_64 is
at a constant offset relative to the kernel base symbol startup_64
so its leakage effectively breaks KASLR for any given kernel build.

In the end, we developed a POC that was around 100 lines of
C, and it successfully leaked KASLR base under a second with
a high degree of accuracy. One can find our original reference
implementation and security report at https://www.openwall.com/
lists/oss-security/2022/12/16/3 [25] and https://www.willsroot.io/
2022/12/entrybleed.html [26], or an updated version that achieves
higher accuracy in Appendix A.

5 RESULTS
Wenowpresent an analysis of the effectiveness of EntryBleed across
a variety of system configurations, demonstrating its near perfect
accuracy and quick performance across many systems. We also
present a root cause analysis of the EntryBleed side channel mech-
anism on bare metal and insights on how hardware virtualization
optimizations affect the attack.

5.1 Observable Effects of EntryBleed
Figure 3 showcases clearly observable effects of the EntryBleed
attack for an attacker attempting to bypass KASLR on modern
Linux kernels with KPTI enabled.

In each of the graphs in Figure 3, the prefetch leakage code
used ran for 1000 times at each KASLR address granularity
(which should be 0x200000) and bounded the search range from
0xffffffff80000000 to 0xffffffffc0000000, the x86_64 range
of possible KASLR bases [3]. As shown in the graphs in Figure 3

(which relate a potential kernel virtual address to its prefetch in-
struction CPU execution latency), there is a noticeable drop in la-
tency from over 100 cycles to around 35 to 60 cycles at eachmeasure-
ment of the entry_SYSCALL_64 region. The observed latency drop
is due to the mapped address being cached in the TLB, preventing
the need for a page table walk. The address for entry_SYSCALL_64
experienced the first major drop in latency on all the systems we
analyzed.

5.2 Scope of Vulnerability
We tested the POC on the following Intel CPU models across the
Linux kernel versions as seen in Table 1. Note that AMD CPU mod-
els were not considered in our attack as they were never vulnerable
to Meltdown, so KPTI would have never been enabled under normal
conditions for those systems.

5.3 Accuracy and Performance of EntryBleed
In Table 2 we demonstrate the attack’s accuracy and speed. This
is in stark juxtaposition to many other attacks in the literature
which require much longer times (ranging from minutes to hours)
in laboratory conditions, oftentimes requiring a post data analy-
sis period to extract meaningful results. When run under normal
system conditions, EntryBleed finishes in under half a second with
effectively 100% accuracy by only taking simple averages of 1000
latency measurements, and works just as well under standard virtu-
alization configurations. Even if the accuracy rates were to decrease
on a noisier system, an attacker can easily re-run the attack for as
many times as needed to confidently deduce KASLR base due to its
speed.

https://www.openwall.com/lists/oss-security/2022/12/16/3
https://www.openwall.com/lists/oss-security/2022/12/16/3
https://www.willsroot.io/2022/12/entrybleed.html
https://www.willsroot.io/2022/12/entrybleed.html

HASP ’23, October 29, 2023, Toronto, Canada William Liu, Joseph Ravichandran, and Mengjia Yan

Table 2: Average time to leak KASLR and accuracy rate of
EntryBleed (per 1000 runs of POC)

CPU Model Kernel
Version

Average
Leakage
Time (s)

Accuracy
Rate

Intel i5-4590 5.4.0-146 0.2236 100%
Intel i7-9750H 5.15.0-83 0.2761 99.7%
Intel i7-6700 5.15.0-67 0.1334 99.6%
Intel i7-9750H
(KVM)

5.15.0-58 0.4148 99.9%

Another interesting question was in regards to the number of
iterations needed for an accurate leakage (the default number of
iterations during testing so far was 1000 as seen in Appendix A). We
computed the accuracy of running the tests repeatedly to study this,
starting from just 1 iteration of the prefetch attack up to 100. We
repeated the test 50 times for each sample and tracked the number
of correct KASLR leaks out of 50 attempts for the given iteration.
As shown in Figure 4, EntryBleed can achieve a perfect success rate
from just a single iteration, making it a remarkably efficient and
effective attack.

0 20 40 60 80 100
Iterations

0%
50%

100%

Ac
cu
ra
cy

Figure 4: Relationship between prefetch iterations to the
accuracy of EntryBleed

5.4 Analysis of Virtualization Behavior
Lastly, we analyzed EntryBleed in the context of Intel VT-x (In-
tel’s virtualization technology) in Linux KVM in relation to VM
relevant MMU optimizations: EPT (Extended Page Tables), VPID
(Virtual Processor ID), and shadow MMU. EPT and VPID can be
toggled off during load time of the KVM driver, and shadow MMU
automatically activates when EPT is off. In this final case, the host
maintains a “shadow” page table mapping guest virtual to host
physical addresses that updates based on changes to a guest page
table.

As we are interested in the preservation of the side channel’s
side effects across guest-host context switches, we need to force
unconditional VM exits from our userland code. Otherwise, as long
as there is no VM exit, it makes sense for hardware accelerated VMs
to preserve the entries in the TLB as it is not switching between
guests or to host. To do this, we injected a cpuid instruction after
the syscall but before the prefetch measurement function, as cpuid
triggers unconditional VM exits [17]. Figure 5 presents EntryBleed
metrics in relation to different VM configurations.

Based on Figure 5a, we see that EPT (Extended Page Tables) does
not help preserve EntryBleed’s side effects across VM exits by itself.
This makes sense, as EPT just acts as a second layer page table; each
virtual address access not in the TLB triggers a page table walk
for guest virtual to guest physical address based on the guest CR3

register, which then triggers a page table walk from guest physical
to host physical address based on the EPT base pointer register in
the VMCS (Virtual Machine Control Structure) [17]. EPT in general
does not affect the TLB state, aside from storing a cached address
translation after a successful page table walk (which shadow paging
also performs).

In contrast, VPID (Virtual Processor ID) plays a major role in
preserving the side effects of this side channel attack, as seen in
Figure 5b and Figure 5c. VPID allows the TLB to cache address
translations for multiple address spaces (similar to Intel’s PCID
technology or ASIDs in other architectures) [17]. The CPU can
choose which TLB to use depending on its execution context and
avoid TLB flushes when switching between guest and host. Even if
a VM exit triggers between the syscall and prefetch measurement
of EntryBleed, the guest TLB would not flush as the host TLB is in
a separate VPID space.

In Figure 5d, we observe an interesting effect for when there is
only shadow paging without VPID. Somehow, EntryBleed can still
observe its effects on the TLB and successfully carry out a prefetch
attack, albeit with a much smaller latency difference from an incor-
rect guess. Currently, the root cause analysis for this phenomenon
is unknown to us, but we suspect there might be a multitude of
cache related micro-architectural subtleties at play here as well
as hypervisor software-specific optimizations. It is still an open
question that requires more investigation, either through system
performance counters or modification of KVM source.

6 DISCUSSION
6.1 Implications of EntryBleed
The ability to trivially leak KASLR at a nearly perfect success rate
across many systems has serious implications for the state of Linux
kernel hardening. As mentioned previously, KASLR is a major bar-
rier for many exploits targeting kernel software bugs, with attackers
often going to great lengths to obtain address leaks through other
corruption bugs and maintain stability of the kernel to continue
exploitation. A common scenario is to reuse the same bug for both
an address leak and arbitrary memory write or control flow hi-
jacking for privilege escalation, as seen in CVE-2022-0185 [24].
EntryBleed effectively cuts the work of an attacker in half, and
can revive the exploitability of bugs previously thought to be unex-
ploitable due to KASLR, such as the “Lord of the IO_Urings” bug
(CVE-2022-29968) [28]. Unlike many other documented KASLR by-
passes, EntryBleed is more universal as it is independent of system
misconfigurations or special user privileges – in fact, there are no
software system settings or available Intel x86 chips that can pre-
vent this. It also finishes in under a second with nearly complete
accuracy and can be re-run for as many times as needed due to its
simplicity, in contrast to many other micro-architectural attacks.
Devices running Linux on Intel systems face a grave and realistic
risk against simpler LPE attacks.

6.2 Future Work
EntryBleed has only been thoroughly explored on Linux systems,
and remains untested on Windows, Darwin, or BSD based systems.
Given that most systems adopted a similar approach to KASLR and
KPTI, it would be unsurprising to see similar results there, and

EntryBleed: A Universal KASLR Bypass against KPTI on Linux HASP ’23, October 29, 2023, Toronto, Canada

 0xffffffff80000000 0xffffffffc0000000
Address

90

100

110

120

130

140

150

160

Pr
ef

et
ch

 L
at

en
cy

 (C
pu

 C
yc

le
s)

(a) EPT Only

 0xffffffff80000000 0xffffffffc0000000
Address

60

80

100

120

140

160

Pr
ef

et
ch

 L
at

en
cy

 (C
pu

 C
yc

le
s)

0xffffffffb9600000, 46

(b) EPT + VPID

 0xffffffff80000000 0xffffffffc0000000
Address

60

80

100

120

140

Pr
ef

et
ch

 L
at

en
cy

 (C
pu

 C
yc

le
s)

0xffffffff8b400000, 46

(c) Shadow MMU + VPID

 0xffffffff80000000 0xffffffffc0000000
Address

80

100

120

140

160

180

Pr
ef

et
ch

 L
at

en
cy

 (C
pu

 C
yc

le
s)

0xffffffff9a800000, 71

(d) Shadow MMU Only

Figure 5: Visualization of prefetch CPU cycles under Intel VT-x on an Intel i7 9750H CPU when side-channeling for the address
of entry_SYSCALL_64 on a 5.15.0-58-generic kernel. Note how no address was found in the graph when only EPT was enabled.

would further increase EntryBleed’s threat. Another interesting
avenue for future exploration is to see if similar prefetch semantics
are vulnerable in mobile architectures like ARM and if an attack
similar in style can be launched to bypass KASLR there.

7 MITIGATION PROPOSAL
One possible solution to EntryBleed would be to relocate the ad-
dresses containing kernel exception handlers during boot time,
before the exception tables and relevant MSR registers are initial-
ized. While a prefetch attack can still leak the kernel trampolines’
addresses, their addresses would be at non-constant offsets to kernel
base, thereby decoupling their leakage from a KASLR bypass for the
rest of the kernel protected by KPTI. This one-time randomization
would also add less overhead than a per process randomization of
the exception handling code.

Something similar to this idea already exists in the form of FG-
KASLR, in which all kernel functions are relocated at randomized
offsets at boot time as an exploit mitigation. We have only been
able to test the original implementation, which did not randomize
assembly based functions so EntryBleed is still functional there;
according to the Linux kernel mailing lists [1], the most recent
version addresses this issue but we have yet to verify it. It is also
known to cause about a second of delay during boot time [4], which
is unacceptable for cloud based environments with the growing
trend of heavy workloads related to micro-services and on demand
VMs. Overall, we believe that only these exposed handlers between
user space and kernel space require randomization for an adequate
and effective mitigation, but do not have plans to develop a working
prototype due to the extremely heavy engineering effort better
suited for core developers of the Linux kernel.

Lastly, although not completely related to EntryBleed, we would
advise OS vendors against disabling KPTI in CPUs with hardware
Meltdown mitigations, as previous work for the prefetch attack
shows. We do not expect these to be the only and last bugs that
exploit a shared page table scheme between kernel and userland.

8 CONCLUSION
EntryBleed presents an efficient, noise-resilient, and system con-
figuration independent mechanism to bypass KASLR on modern
Intel based systems when running under KPTI through the usage
of x86 prefetch instructions. Due to its effectiveness and fast rate
of leakage, it can significantly lower the barrier for malicious at-
tackers looking to design kernel exploits as it removes the need for

a leakage primitive for virtual address space derandomization. We
also provide an analysis on how the attack can survive across VM
exits under Intel VT-x, and conclude with a mitigation proposal
based on pre-existing work for FG-KASLR.

REFERENCES
[1] 2021. Function Granular KASLR. https://lore.kernel.org/all/20211223002209.

1092165-1-alexandr.lobakin@intel.com/
[2] 2023. Linux source code (v6.0). https://elixir.bootlin.com/linux/v6.0/source
[3] 2023. Virtual Memory Map. https://www.kernel.org/doc/Documentation/x86/

x86_64/mm.txt
[4] Kristen Accardi. 2020. Function-Granular KASLR. https://lwn.net/Articles/

824307/
[5] bcoles. 2023. KASLD. https://github.com/bcoles/kasld
[6] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin Schwarzl,

and Daniel Gruss. 2020. KASLR: Break It, Fix It, Repeat. In Proceedings of the
15th ACM Asia Conference on Computer and Communications Security (Taipei,
Taiwan) (ASIA CCS ’20). Association for Computing Machinery, New York, NY,
USA, 481–493. https://doi.org/10.1145/3320269.3384747

[7] Jonathan Corbet. 2017. KAISER: hiding the kernel from user space. https://lwn.
net/Articles/738975/

[8] Intel Corporation. 2023. Intel Software Security Guidance. https:
//www.intel.com/content/www/us/en/developer/topic-technology/software-
security-guidance/processors-affected-consolidated-product-cpu-model.html

[9] Jack Dates. 2022. The LDT, a Perfect Home for All Your Kernel Payloads. https:
//blog.ret2.io/2022/08/17/macos-dblmap-kernel-exploitation/

[10] Nico Economou. 2020. Meltdown Reloaded: Breaking Windows KASLR by Leak-
ing KVA Shadow Mappings. https://labs.bluefrostsecurity.de/blog/2020/06/30/
meltdown-reloaded-breaking-windows-kaslr/

[11] Jake Edge. 2013. Kernel address space layout randomization. https://lwn.net/
Articles/569635/

[12] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation
Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks.
In 27th USENIX Security Symposium (USENIX Security 18). USENIX Association,
Baltimore, MD, 955–972. https://www.usenix.org/conference/usenixsecurity18/
presentation/gras

[13] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, ClémentineMaurice,
and Stefan Mangard. 2017. KASLR is Dead: Long Live KASLR. 161–176. https:
//doi.org/10.1007/978-3-319-62105-0_11

[14] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Man-
gard. 2016. Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security (Vienna, Austria) (CCS ’16). Association for Computing Machinery,
New York, NY, USA, 368–379. https://doi.org/10.1145/2976749.2978356

[15] Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical Timing Side
Channel Attacks against Kernel Space ASLR. In 2013 IEEE Symposium on Security
and Privacy. 191–205. https://doi.org/10.1109/SP.2013.23

[16] RedHat Inc. 2022. CVE-2022-4543. https://access.redhat.com/security/cve/cve-
2022-4543

[17] Intel. 2020. Intel 64 and IA-32 Architectures Software Developer’s Manual: System
Programming, Volume 3.

[18] Seth Jenkins. 2022. Exploiting CVE-2022-42703 - Bringing back the stack at-
tack. https://googleprojectzero.blogspot.com/2022/12/exploiting-CVE-2022-
42703-bringing-back-the-stack-attack.html

[19] Ken Johnson. 2018. KVA Shadow: Mitigating Meltdown on Windows. https://msrc.
microsoft.com/blog/2018/03/kva-shadow-mitigating-meltdown-on-windows/

https://lore.kernel.org/all/20211223002209.1092165-1-alexandr.lobakin@intel.com/
https://lore.kernel.org/all/20211223002209.1092165-1-alexandr.lobakin@intel.com/
https://elixir.bootlin.com/linux/v6.0/source
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://lwn.net/Articles/824307/
https://lwn.net/Articles/824307/
https://github.com/bcoles/kasld
https://doi.org/10.1145/3320269.3384747
https://lwn.net/Articles/738975/
https://lwn.net/Articles/738975/
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://blog.ret2.io/2022/08/17/macos-dblmap-kernel-exploitation/
https://blog.ret2.io/2022/08/17/macos-dblmap-kernel-exploitation/
https://labs.bluefrostsecurity.de/blog/2020/06/30/meltdown-reloaded-breaking-windows-kaslr/
https://labs.bluefrostsecurity.de/blog/2020/06/30/meltdown-reloaded-breaking-windows-kaslr/
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
https://www.usenix.org/conference/usenixsecurity18/presentation/gras
https://www.usenix.org/conference/usenixsecurity18/presentation/gras
https://doi.org/10.1007/978-3-319-62105-0_11
https://doi.org/10.1007/978-3-319-62105-0_11
https://doi.org/10.1145/2976749.2978356
https://doi.org/10.1109/SP.2013.23
https://access.redhat.com/security/cve/cve-2022-4543
https://access.redhat.com/security/cve/cve-2022-4543
https://googleprojectzero.blogspot.com/2022/12/exploiting-CVE-2022-42703-bringing-back-the-stack-attack.html
https://googleprojectzero.blogspot.com/2022/12/exploiting-CVE-2022-42703-bringing-back-the-stack-attack.html
https://msrc.microsoft.com/blog/2018/03/kva-shadow-mitigating-meltdown-on-windows/
https://msrc.microsoft.com/blog/2018/03/kva-shadow-mitigating-meltdown-on-windows/

HASP ’23, October 29, 2023, Toronto, Canada William Liu, Joseph Ravichandran, and Mengjia Yan

[20] Taehun Kim, Taehyun Kim, and Youngjoo Shin. 2021. Breaking KASLR Using
Memory Deduplication in Virtualized Environments. Electronics 10, 17 (2021).
https://www.mdpi.com/2079-9292/10/17/2174

[21] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
2019 IEEE Symposium on Security and Privacy (SP). 1–19. https://doi.org/10.1109/
SP.2019.00002

[22] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from
User Space. In Proceedings of the 27th USENIX Conference on Security Symposium
(Baltimore, MD, USA) (SEC’18). USENIX Association, USA, 973–990.

[23] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-
Level Cache Side-Channel Attacks are Practical. In 2015 IEEE Symposium on
Security and Privacy. 605–622. https://doi.org/10.1109/SP.2015.43

[24] William Liu. 2022. CVE-2022-0185 - Winning a $31337 Bounty after Pwning Ubuntu
and Escaping Google’s KCTF Containers. https://www.willsroot.io/2022/01/cve-
2022-0185.html

[25] William Liu. 2022. CVE-2022-4543: KASLR Leakage Achievable even with KPTI
through Prefetch Side-Channel. https://www.openwall.com/lists/oss-security/
2022/12/16/3

[26] William Liu. 2022. EntryBleed: Breaking KASLR under KPTI with Prefetch (CVE-
2022-4543). https://www.willsroot.io/2022/12/entrybleed.html

[27] Colin Percival. 2009. Cache missing for fun and profit. (08 2009).
[28] Joseph Ravichandran and Michael Wang. 2022. Lord of the io_urings. Technical

Report.
[29] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal

War in Memory. In 2013 IEEE Symposium on Security and Privacy. 48–62. https:
//doi.org/10.1109/SP.2013.13

[30] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A. Gunter. 2017. Leaky Cauldron
on the Dark Land: Understanding Memory Side-Channel Hazards in SGX. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (Dallas, Texas, USA) (CCS ’17). Association for Computing Machinery,
New York, NY, USA, 2421–2434. https://doi.org/10.1145/3133956.3134038

[31] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In Proceedings of the 23rd USENIX
Conference on Security Symposium (San Diego, CA) (SEC’14). USENIX Association,
USA, 719–732.

https://www.mdpi.com/2079-9292/10/17/2174
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2015.43
https://www.willsroot.io/2022/01/cve-2022-0185.html
https://www.willsroot.io/2022/01/cve-2022-0185.html
https://www.openwall.com/lists/oss-security/2022/12/16/3
https://www.openwall.com/lists/oss-security/2022/12/16/3
https://www.willsroot.io/2022/12/entrybleed.html
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1145/3133956.3134038

EntryBleed: A Universal KASLR Bypass against KPTI on Linux HASP ’23, October 29, 2023, Toronto, Canada

A ENTRYBLEED POC� �
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <stdint.h>
4
5 #define KERNEL_LOWER_BOUND 0xffffffff80000000ull
6 #define KERNEL_UPPER_BOUND 0xffffffffc0000000ull
7 #define entry_SYSCALL_64_offset 0xe00000ull
8
9 uint64_t sidechannel(uint64_t addr) {
10 uint64_t a, b, c, d;
11 asm volatile (".intel_syntax noprefix;"
12 "mfence;"
13 "rdtscp;"
14 "mov %0, rax;"
15 "mov %1, rdx;"
16 "xor rax, rax;"
17 "lfence;"
18 "prefetchnta qword ptr [%4];"
19 "prefetcht2 qword ptr [%4];"
20 "xor rax, rax;"
21 "lfence;"
22 "rdtscp;"
23 "mov %2, rax;"
24 "mov %3, rdx;"
25 "mfence;"
26 ".att_syntax;"
27 : "=r" (a), "=r" (b), "=r" (c), "=r" (d)
28 : "r" (addr)
29 : "rax", "rbx", "rcx", "rdx");
30 a = (b << 32) | a;
31 c = (d << 32) | c;
32 return c - a;
33 }
34
35 #define STEP 0x200000ull
36 #define SCAN_START KERNEL_LOWER_BOUND + entry_SYSCALL_64_offset
37 #define SCAN_END KERNEL_UPPER_BOUND + entry_SYSCALL_64_offset
38
39 #define DUMMY_ITERATIONS 5
40 #define ITERATIONS 1000
41 #define ARR_SIZE (SCAN_END - SCAN_START) / STEP
42
43 uint64_t leak_syscall_entry(void)
44 {
45 uint64_t data[ARR_SIZE] = {0};
46 uint64_t min = ~0, addr = ~0;
47
48 for (int i = 0; i < ITERATIONS + DUMMY_ITERATIONS; i++)
49 {
50 for (uint64_t idx = 0; idx < ARR_SIZE; idx++)
51 {
52 uint64_t test = SCAN_START + idx * STEP;
53 syscall(104);
54 uint64_t time = sidechannel(test);
55 if (i >= DUMMY_ITERATIONS)
56 data[idx] += time;
57 }
58 }
59
60 for (int i = 0; i < ARR_SIZE; i++)
61 {
62 data[i] /= ITERATIONS;
63 if (data[i] < min)
64 {
65 min = data[i];
66 addr = SCAN_START + i * STEP;
67 }
68 printf("%llx %ld\n", (SCAN_START + i * STEP), data[i]);
69 }
70
71 return addr;
72 }
73
74 int main()
75 {
76 printf ("KASLR base %llx\n", leak_syscall_entry() - entry_SYSCALL_64_offset);
77 }� �

	Abstract
	1 Introduction
	1.1 KASLR Security
	1.2 EntryBleed

	2 Background
	2.1 Virtual Memory and Paging
	2.2 Address Randomization
	2.3 Timing and Prefetch Side-Channels

	3 The EntryBleed Attack
	3.1 A Security Vulnerability in KPTI
	3.2 Attack Strategy
	3.3 Root Cause Analysis

	4 Experimental Verification
	5 Results
	5.1 Observable Effects of EntryBleed
	5.2 Scope of Vulnerability
	5.3 Accuracy and Performance of EntryBleed
	5.4 Analysis of Virtualization Behavior

	6 Discussion
	6.1 Implications of EntryBleed
	6.2 Future Work

	7 Mitigation Proposal
	8 Conclusion
	References
	A EntryBleed POC

