Pensieve: Microarchitectural Modeling for Security Evaluation

Yuheng Yang
Massachusetts Institute of Technology
Cambridge, MA, USA
yuhengy@mit.edu

Stella Lau
Massachusetts Institute of Technology
Cambridge, MA, USA
stellal@mit.edu

ABSTRACT

Traditional modeling approaches in computer architecture aim to
obtain an accurate estimation of performance, area, and energy of a
processor design. With the advent of speculative execution attacks
and their security concerns, these traditional modeling techniques
fall short when used for security evaluation of defenses against
these attacks.

This paper presents Pensieve, a security evaluation framework
targeting early-stage microarchitectural defenses against specula-
tive execution attacks. At the core, it introduces a modeling dis-
cipline for systematically studying early-stage defenses. This dis-
cipline allows us to cover a space of designs that are function-
ally equivalent while precisely capturing timing variations due
to resource contention and microarchitectural optimizations. We
implement a model checking framework to automatically find vul-
nerabilities in designs. We use Pensieve to evaluate a series of
state-of-the-art invisible speculation defense schemes, including
Delay-on-Miss, InvisiSpec, and GhostMinion, against a formally
defined security property, speculative non-interference. Pensieve
finds Spectre-like attacks in all those defenses, including a new
speculative interference attack variant that breaks GhostMinion,
one of the latest defenses.

CCS CONCEPTS

- Security and privacy — Side-channel analysis and coun-
termeasures; Formal security models; « Computer systems
organization — Superscalar architectures.

KEYWORDS

hardware security, speculative execution attacks, microarchitec-
tural model, model checking, uninterpreted function

ACM Reference Format:

Yuheng Yang, Thomas Bourgeat, Stella Lau, and Mengjia Yan. 2023. Pensieve:
Microarchitectural Modeling for Security Evaluation. In Proceedings of the
50th Annual International Symposium on Computer Architecture (ISCA ’23),

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ISCA °23, June 17-21, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0095-8/23/06.

https://doi.org/10.1145/3579371.3589094

Thomas Bourgeat
Massachusetts Institute of Technology
Cambridge, MA, USA
bthom@mit.edu

Mengjia Yan
Massachusetts Institute of Technology
Cambridge, MA, USA
mengjiay@mit.edu

June 17-21, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/lo.l145/3579371.3589094

1 INTRODUCTION

Speculative execution attacks, such as Spectre [34] and Melt-
down [37], have become one of the most critical security threats
in the computer architecture community. These attacks exploit the
side effects of transient instructions, which due to mis-speculation,
are speculatively executed but squashed later, and leak secrets
via various microarchitectural structures, including caches [33—
35, 37, 39, 49], TLBs [26], branch predictors [15], and functional
units [8].

Researchers have been actively proposing mitigation mecha-
nisms to block speculative execution attacks. For example, several
mechanisms aim to achieve invisible speculation by hiding the
changes of cache states caused by speculative memory instructions:
InvisiSpec [58], SafeSpec [32], GhostLoads [47], Delay-on-Miss [48],
and Muontrap [3]. Unfortunately, these plausible mitigation mech-
anisms were later found to be vulnerable to more advanced attack
strategies called speculative interference attacks [7, 24]. As a re-
sponse, GhostMinion [1] was proposed to fix the security problems
and specifically mitigate the speculative interference attacks. How-
ever, it is unclear whether the new mechanism is really bullet-proof,
until either we find a new attack to break it or formally prove what
security it guarantees.

The community has been mostly relying on informal analy-
ses to study the security of microarchitectural defenses against
speculative execution attacks. In most defense papers, the authors
first implement their proposed defense mechanism in a concrete
Gemb5 [9] model and show that the implementation can practically
block one specific attack (e.g., the Spectre gadget). Next, a more
general security argument is made: it is argued intuitively why the
defense scheme should be secure, and why it does not just block a
single attack for one specific microarchitectural model. Given the
complexity of microarchitectures, such an analysis is unlikely to
get high-assurance security claims.

1.1 Motivation

This paper strives to help architects formally evaluate the secu-
rity properties of defense proposals against speculative execution
attacks. One of the key obstacles to performing a formal evalua-
tion is the lack of a proper modeling approach of early-stage
microarchitectural designs for security evaluation. For now,
early-stage microarchitectural designs are usually loosely described

https://orcid.org/0000-0001-8695-5139
https://orcid.org/0000-0002-8468-8409
https://orcid.org/0000-0003-3921-9440
https://orcid.org/0000-0002-6206-9674
https://doi.org/10.1145/3579371.3589094
https://doi.org/10.1145/3579371.3589094

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

at a high abstraction level using human languages. However, for
the purpose of security evaluation, a desired microarchitectural
model should satisfy the following requirements.

First, since speculative execution attacks exploit timing side chan-
nels, a proper modeling approach needs to be precise in capturing
any timing variations due to resource contention and microarchi-
tectural optimizations. Unfortunately, microarchitectural analytical
models (e.g., roofline models), and microarchitecture simulators
(e.g., Gemb), are insufficient, as they only try to approximate the
precise timing for performance evaluation. For example, when mod-
eling cache performance, a Gem5 simulator can ignore details such
as port contention for fast simulation, which has negligible impacts
on the reported performance statistics, but can miss important
speculative execution vulnerabilities.

Second, a modeling approach of early-stage microarchitectural
designs should allow us to use a single model to represent a space
of designs that are functionally equivalent and differ in their timing
behaviors. The reason is that computer architects generally expect
and even claim that the proposed defense schemes are generic and
compatible with different design configurations, instead of targeting
a single implementation. For example, a defense scheme evaluated
to be secure when a processor has a 1-cycle functional unit is usually
expected to work securely when the functional unit takes 2 cycles
or more, or no matter whether the functional unit is pipelined or
not. Essentially, we need a modeling approach to precisely describe
a space of microarchitecture designs. This requirement rules out
the approach of encoding a concrete implementation of a defense
scheme at the level of synthesizable RTL.

Moreover, our decision to not work at the level of RTL is also
driven by the fact that almost no defense mechanism proposed in
the last couple of years [1, 3, 32, 38, 48, 58, 60] has been given with
an RTL implementation. A potential reason is that people would
not want to spend a huge amount of engineering effort before they
have the assurance that a design is secure, which further motivates
us to focus on modeling approaches targeting early-stage designs.

Third, the modeling approach should be aligned with the proce-
dure used by computer architects to come up with defense proposals.
Computer architects commonly view microprocessors as built by
hierarchically composing many different modules, such as branch
predictor modules, functional unit modules, and cache modules. Mi-
croarchitectural defense schemes are often conceived and intended
to be used as a modular add-on to an existing microarchitectural
design. Specifically, designers usually select a certain number of the
original modules and augment these modules with security-related
features that change the modules’ timing behaviors, such as delay-
ing a load upon cache misses [48]. These hardened modules are
then plugged back into the existing microarchitectural design, and
the resulting design is expected to work securely against a broad set
of speculative execution attack variations. Usually, many modules
of the original design are untouched by the defense scheme. Unfor-
tunately, we find that no existing modeling approach both aligns
well with such a modular design procedure and is also amenable to
evaluating speculative execution vulnerabilities.

Yuheng Yang, Thomas Bourgeat, Stella Lau, and Mengjia Yan

1.2 This paper

In this paper, we present Pensieve, a security evaluation framework
for defenses against speculative execution attacks targeting early-
stage microarchitectural designs. Pensieve introduces a modeling
discipline that is specifically designed for the purpose of security
evaluation of timing side channels, and leverages symbolic execu-
tion and bounded model checking to help architects automatically
check defense schemes against formal guarantees.

Our modeling discipline describes a microarchitectural design
as a modular composition of microarchitectural modules, matching
the modular design procedure widely used by computer architects.
We enforce a handshaking interface between different modules and
further decompose each module into a functionality submodule
and a timing submodule. Our modeling discipline allows designers
to express functionality without worrying about timing or RTL
synthesizability, and meanwhile allows capturing timing signals
at cycle granularity. Furthermore, our modeling discipline allows
the designers to capture a space of designs with potentially com-
plex timing behaviors. The way we achieve this is via the usage
of uninterpreted functions, a primitive to represent a space of func-
tions. We extensively use uninterpreted functions inside the timing
submodules, enabling the designers to focus on what factors affect
timing rather than on specific implementation details.

Pensieve is a security evaluation framework built around this
modeling discipline. After the user builds the microarchitectural
model of a defense mechanism, the framework automatically evalu-
ates its security against a formally defined property. If the security
property is not satisfied, the framework generates a counterexam-
ple, which consists of an attack code sequence, the initial state of
the architectural model, and the execution trace that leaks secrets.
The user can then inspect the counterexample to locate the problem
in the defense mechanism.

We implement Pensieve in Rosette[51], a solver-aided program-
ming language. We use Pensieve to perform case studies of state-
of-the-art defense mechanisms against speculative execution at-
tacks, including Delay-on-Miss [48], InvisiSpec [58], SafeSpec [32],
GhostLoads [47], Muontrap [3], and GhostMinion [1]. In these case
studies, we were able to identify known vulnerabilities in these de-
fenses by finding Spectre-like attacks and speculative interference
attacks.

More excitingly, Pensieve is able to find design flaws which were
not known before and discover new variations of speculative exe-
cution attacks that have not been discussed in prior work [7, 24].
Specifically, previous research has described speculative interfer-
ence attacks as exploiting a code pattern where a transient “in-
terfering” instruction causes contention with a non-speculative
“transmitter” instruction that is younger in program order. How-
ever, our attack has identified a new code pattern where the two
instructions are not related in program order. This newly discov-
ered variant can bypass GhostMinion [1], one of the latest defenses
that was previously believed to be resilient against speculative
interference attacks.

Contributions In summary, this paper makes the following con-
tributions:

e We propose a microarchitectural modeling discipline for formally
studying early-stage defenses against speculative execution at-

Pensieve: Microarchitectural Modeling for Security Evaluation

tacks. Our modeling approach precisely captures timing varia-
tions due to contention and microarchitectural optimizations,
covers a space of designs that are functionally equivalent with
different timing, and is aligned with the way architects come up
with defense proposals.

We build a security evaluation framework upon this modeling ap-
proach that leverages bounded model checking to automatically
find speculative execution vulnerabilities in designs.

We apply Pensieve to evaluate the security properties of a series
of state-of-the-art defense mechanisms, including Delay-on-Miss,
InvisiSpec, and GhostMinion. We find valid attacks and flaws in
our case studies, including an implementation flaw in GhostMin-
ion and a new speculative interference attack variant.

2 BACKGROUND
2.1 Speculative Execution Attacks and Defenses

Speculative execution attacks are a class of information leakage
attacks where attackers exploit the side effects of transient instruc-
tions. A transient instruction is an instruction that is speculatively
executed on an out-of-order core but is later squashed due to mis-
speculation, i.e. under a mis-speculated branch. The side effects
of transient instructions include modifying the states of micro-
architectural structures, such as caches [34, 37], TLBs [26], and
branch predictors [15], which can be monitored by an attacker
program. High-profile speculative execution attacks include Melt-
down [37], Spectre [34], and its variants [33, 35, 39, 49]. The com-
puter architecture community has been actively seeking effective
defense solutions. We briefly summarize the sequence of research
attempts below.

Invisible speculation The first set of defenses focuses on achiev-
ing “invisible speculation” [3, 32, 48, 58]. As caches are one of the
largest attack surfaces, these defenses attempt to block speculative
execution attacks by hiding the side effects of speculative memory
accesses on the cache hierarchy.

Delay-on-Miss (DoM) [48] modifies the L1 cache. When serving
a speculative load request that hits in the L1 cache, the data will be
returned to the core without updating any persistent cache states,
including replacement bits. If the speculative load misses in L1, it
will be delayed until it is non-speculative, when either there is no
branch ahead of this instruction or the instruction is guaranteed to
commit.

Other invisible speculation schemes, including InvisiSpec [58],
SafeSpec [32], GhostLoads [47], and Muontrap [3], make changes
to multiple levels of caches. They allow speculative loads to look up
and fetch data from all levels of caches without changing persistent
cache states, and store the fetched data in a small buffer close to the
core. These schemes differ in details, such as buffer organization
and consistency support.

Speculative interference attacks The speculative interference
attack [7] is a variation of speculative execution attacks that can by-
pass all the invisible speculation schemes above and leak secrets via
caches. The key insight is that mis-speculated younger instructions
(called “interfering instructions”) can change the timing of older,
bound-to-retire instructions (called “transmitter instructions”) via
transient contention on ALUs and MSHRs. This attack was also

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

observed in SpectreRewind [24].

In [7], the authors showed that such timing interference can
result in persistent and observable changes to cache states. Their
proof-of-concept demonstration uses the timing interference from
transient instructions to change the ordering of executing several
bound-to-retire instructions. This reordering then triggers specific
conditions of the cache replacement policy and leads to measurable
cache side effects.

GhostMinion As a response, GhostMinion was proposed to de-
fend against speculative interference attacks. The authors define a
security property called temporal ordering, which states that the
processor only allows committed instructions or older instructions
to affect the timing of younger instructions, where “older” and
“younger” are defined according to program order. GhostMinion
also provides an implementation of temporal ordering. The proces-
sor maintains a timestamp for each instruction to track program
order, and every microarchitectural structure is augmented with a
scheduling or resource allocation policy that gives higher priority
to older instructions.

2.2 Model Checking

Model checking [16] is an automatic (or “push-button”) technique
that can be used to check whether a given model satisfies a log-
ical formula (e.g. a property related to functional correctness or
security). This technique has been applied to find subtle bugs in
complex designs, such as communication protocols [18], sequential
circuits [10, 11], and micro-controllers [17]. Bounded model check-
ing checks for all states that can be reached with a transition length
of k.

When using a model checking tool (also referred to as a model
checker), the user needs to provide a clearly defined model of the
system and a formulated property to be verified. The model check-
ing tool takes the two inputs and generates one of the following
outputs: 1) the tool terminates and indicates the model satisfies
the property, 2) the tool terminates with concrete counterexamples
to show why the model fails to hold the property, and 3) the tool
does not terminate due to scalability issues and cannot provide an
answer.

The state-of-the-art model checking techniques use solvers
(e.g. Z3 [19], Boolector [44], CVC5 [6], JasperGold [12]) to check
whether the generated formula holds and return a counterexample
otherwise.

2.3 Uninterpreted Function

An uninterpreted function is a function with specified input and
output types, but with an unspecified function body. It represents
an arbitrary function inside a space of functions. For example, an
uninterpreted function written as f: (bool,bool) -> bool can
be viewed as any function among the set of functions performing
two-bit operations, such as AND, OR, and XOR.

This space of possible behaviors can be restricted by adding
constraints on the function. For example, if we intend to restrict the
previous space of functions to exclude the AND operation, we can add
an assumption f(x,y) !=x&y. Overall, uninterpreted functions are
maximally flexible, representing any function with any additional
constraints.

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

Uninterpreted functions are widely used in the formal-method
community to abstract away unimportant design details either
for generality (i.e. to represent a larger space of designs) or to
remove details known to increase verification complexity (while
still preserving the soundness of the verification result).

3 SECURITY GOAL AND THREAT MODEL

In this paper, we perform security evaluation using a formal security
property called speculative non-interference, which has been used in
prior work [13, 28, 29]. Intuitively, speculative non-interference re-
quires that a program executing on a speculative machine does not
leak more information than when it is running on a non-speculative
machine.

Formally, we define speculative non-interference by introducing
the following symbols. Given a program P and a memory consist-
ing of both public data M,,,;, and secret data Msec executing on a
microarchitectural design u, we denote the attacker’s observation
of the system as Oy, (P, Mpup. Msec). We denote Orga as an ISA em-
ulator that serves as the non-speculative machine and Op3 as the
target speculative out-of-order processor under study. The follow-
ing property states the property of speculative non-interference for
03:

VP, Mpub: Msec, Ms/ec’
if Orsa (P, Mpuh: Msec) = Orsa (P, Mpuh: Ms/ec)
then Op3(P, Mpub, Msec) = Oo3 (P, Mpub’ Ms/ec)

The property states that for any program that runs on two distinct
secrets Msee and Mj,., if the program produces indistinguishable
observations in the ISA model, then the observations generated by
the O3 machine should also be indistinguishable.

Speculative non-interference only talks about the behaviors of
programs that are secure in the ISA model. If a program were to be
already leaky when executing non-speculatively, there would be
nothing that a defense against speculative execution attacks could
do about it.

Observation function Prior work has used at least three variants
of observation functions for an O3 processor:

(1) A trace of committed instructions and each instruction’s
commit time.

(2) A trace of the addresses of memory requests and each mem-
ory request’s issue time and response time.

(3) An ordered trace of the addresses of memory requests with
no cycle number.

There have been discussions [1, 7] that using the three observation
functions for security evaluation is likely to lead to the same out-
come. It is a non-goal for this paper to argue which observation
function is better.

The Pensieve evaluation framework is general enough and can
work with any of the three observation functions. In the rest of
this paper, we use function (1) to explain the case study exam-
ples, as using this function usually yields the shortest attack code
sequences.

Yuheng Yang, Thomas Bourgeat, Stella Lau, and Mengjia Yan

valid /7 \ valid valid 7~ N\ valid

1 1
ready| || ready ready | || ready
Time addr__Time
AB | |Func|a*B m A'B addr | [Func| Mjaddr] m M(addr]
(a) Multiplier (b) Memory

Figure 1: Modeling examples showing the hand-shaking in-
terface and the decomposing of functionality and timing,.
Red texts denote additional timing-related signals that might
affect the timing behavior. Highlighted submodules use un-
interpreted functions inside.

4 MICROARCHITECTURAL MODELING
DISCIPLINE

In this section, we describe a microarchitectural modeling disci-
pline amenable to studying speculative execution vulnerabilities.
We target early-stage microarchitectural defenses. These defenses
change one or multiple modules’ timing behaviors, such as delaying
a load upon cache misses, and work as modular add-ons to existing
designs. We start by giving a high-level idea about how our model-
ing discipline achieves the three desired properties in Section 1.1
via two toy examples. We then discuss the key techniques used
in our modeling discipline and explain how to express defense
mechanisms as modular add-ons to a baseline microarchitecture.

4.1 Two Toy Examples

We illustrate our modeling approach using a multiplier with an
arbitrary number of pipeline stages and computation latency, and
a memory hierarchy with an arbitrary number of cache levels,
using arbitrary cache associativity and replacement policy. Figure 1
illustrates the modular view of the two examples.

The two modules use a hand-shaking interface that consists of
an input and output data channel, and each of the data channels
is associated with a pair of valid and ready signals. We leverage
this interface to explicitly distinguish between functionality and
timing signals: we consider the input and output data channels
as functionality signals and the valid and ready signals as timing
signals.

We then further decompose each module into a functionality
submodule and a timing submodule, and make them operate on
functionality signals and timing signals respectively. For example,
in the multiplier, the functionality submodule only operates on
the functionality signals by taking the two operands A and B as
input and computing the product. In the memory example, the
functionality submodule maintains an array of data, indexes the
array using the input address, and outputs the indexed data.

The timing submodules are implemented using a new modeling
primitive, called an abstract delay buffer. An abstract delay buffer
works by taking data from its input channel, adding some (poten-
tially unspecified) latency, and forwarding the data to its output
channel. Inside the buffer, we use uninterpreted functions to deter-
mine when the buffer can take in new data and when data in the
buffer can be forwarded to the output.

Implementation of an Abstract Memory We provide an imple-
mentation of an abstract memory in Figure 2 to describe how the

1

6

16

30
31
32

Pensieve: Microarchitectural Modeling for Security Evaluation

module memory (
// data channel
input addr, output data,
// hand-shaking signals

input Din_vld, output Din_rdy,
output Dout_vld, input Dout_rdy);
reg Mem[MAX]; wire internal_data;

// functionality submodule
assign internal_data = Mem[addr];
// timing submodule

abstract_delay_fifo (internal_data, data,
Din_vld, Din_rdy, Dout_vld, Dout_rdy,
addr); // addr is the additional

// timing-related signal
endmodule

Figure 2: The implementation of an abstract memory.

module abstract_delay_fifo (
// data channel
input Din, output Dout,
// hand-shaking signals
input Din_vld, output Din_rdy,
output Dout_vld, input Dout_rdy,
// additional timing-related signals
input Tfactor);

// the implementation of a FIFO
reg buffer[MAX], head, tail;
always @(posedge clk) begin
if (Din_vld && Din_rdy) begin //enqueue
buffer[tail] <= Din;
tail <= tail + 1;
end
if (Dout_vld && Dout_rdy) // dequeue
head <= head + 1;
end
Dout = buffer[head];
// generate timing signals
reg history[MAX], cnt; //unlimited widths
always @(posedge clk) begin
history[cnt] <= {1'b1, Din_vld, Dout_rdy,
WIDTH{Din_vld} & Tfactor};
cnt <= cnt + 1;

end

// F1 and F2 are uninterpreted functions

Din_rdy = F1(history);

Dout_vld = F2(history) && head!=tail;
endmodule

Figure 3: An abstract single-channel delay FIFO.

functionality and timing submodules work together. In Figure 2,
line 10 describes the behavior of the functionality submodule, which
generates the data to be returned by the memory. Lines 12-14 de-
scribe the behavior of the timing submodule, which models an
abstract buffer to determine the valid and ready signals.

To see how uninterpreted functions are used, we provide the
code for an abstract single-channel delay FIFO in Figure 3. Lines 2-8
list the buffer’s interface with an input and output channel for data

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

transfers and two pairs of valid and ready signals for hand-shaking.
Lines 10-20 show the implementation of a FIFO’s enqueue and
dequeue operations. Lines 22-31 show how the timing signals are
generated using uninterpreted functions. In this example, the ready
and valid signals are generated by the uninterpreted functions F1
and F2, which take the history of cycle-by-cycle input ready and
valid signals and any additional timing-related signals specified by
users, denoted as Tfactor.

Abstract Delay Buffer Variation In the example above, we used
a single-channel in-order buffer. To cover more complex designs,
we provide the following variations for abstract delay buffers.

First, multiple input and output channels. We can have abstract
delay buffers supporting multiple input and output channels to
model scenarios where the buffers take more than one input per
cycle, e.g. a dual-port register or cache.

Second, non-FIFO order. Specifically, we use an uninterpreted
function to decide which valid entry should be selected to forward
to the output channel.

Third, reset signals. We use two types of reset signals to the
buffer. The first type clears all the data stored in the buffer. The
second type additionally resets the timing behaviors of the buffer
by clearing the input arguments of all the uninterpreted functions
(the variable history in Figure 3). The first type is used in modules
with internal states, such as branch predictors. A reset only cancels
the inflight branch predictions but allows previous instructions to
influence future branch prediction outcomes. The second type is
used in modules that do not keep internal states, such as a multiplier.

4.2 The Modeling Discipline

We now summarize our modeling discipline. Given a processor, we
express the design as a modular composition of microarchitectural
modules and think of each module as performing some (potentially
unspecified) functionality with some (potentially unspecified) la-
tency, and so further decompose each module into functionality and
timing submodules. We use a standardized hand-shaking interface
for inter-module communication and uninterpreted functions to
capture the “potentially unspecified” nature of each submodule.

Hand-shaking interface For each channel at every clock cycle,
the ready signal indicates whether a module can take new input at
that cycle, and the valid signal indicates whether a module generates
an output at that cycle. This is a standard interface that is familiar
to RTL designers. We have shown that such an interface helps us
to distinguish between functionality and timing signals in the two
toy examples.

In addition, the interface mimics wire-level behaviors, e.g., for
each input and output channel, only one piece of data can use
the channel per cycle. This allows us to capture precise timing
activities at cycle granularity with RTL-level precision. This differs
from simulators such as Gem5, where a user has the freedom to
decide whether some contention details need to be modeled.

Uninterpreted functions In Pensieve, we extensively use un-
interpreted functions (UFs for short) for two purposes. First, we
leverage UFs for generality: to represent a large space of designs.
In addition to using them in the timing submodules (recall the
multiplier and memory examples in Figure 1), we also use UFs in

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

functionality modules, e.g. in the fetch module to model a set of
branch predictors.

Second, we use UFs to reduce modeling efforts by hiding unim-
portant design details. An uninterpreted function f: input ->
output explicitly states that the variables that are part of the func-
tion’s input may influence the output, and anything that does not
belong to the input will not influence the output. Therefore, using
UFs allows users to focus on what affects the timing of a design,
rather than how these factors affect timing.

4.3 Covering Complex Designs with Simple
Models

One of the key benefits of our modeling discipline is that we are
able to use simple models to cover a large space of complex design
features. This is achieved because using uninterrupted functions
allows us to focus on which signals affect the timing of a design
and abstract implementation details related to how these signals
affect timing.

As an example, consider the modeling of a large family of multi-
pliers (Figure 1(a)). We use a UF to generate the output valid signal.
The UF uses the history of the ready and valid signals as arguments.
Such a simple model describes any first-in-first-out multiplier mod-
ule that takes an arbitrary number of cycles to process each request.
If we use the instruction’s operands as additional arguments of
the UF (i.e. specifying the operands as additional timing-related
signals), the UF states that the operand values can influence the
computation latency. Such a simple tweak allows us to cover multi-
pliers with value-based optimizations, such as zero-skip and table
lookup of pre-computed values.

To further illustrate the point that simple models in Pensieve can
cover the timing behaviors exhibited by complex designs, consider
the memory example. When using a UF with the instruction’s ad-
dress as an argument, the model represents any memory hierarchy
whose response latency depends on the history of requested ad-
dresses. Such a memory hierarchy is extremely generic, and thus
includes memory designs with an arbitrary cache hierarchy with
varied cache levels, capacity, associativity, and replacement pol-
icy. In addition, it includes any address-based optimizations, such
as prefetching and silent data eviction using potentially complex
heuristics.

Moreover, as is traditional in the hardware formal methods com-
munity, we can also use UFs to model the functionality of branch
predictors. This allows us to model arbitrary branch direction pre-
diction schemes, ranging from a simple tournament policy to a
complex TAGE design. Moreover, applying UFs in the issue sched-
uler models an arbitrary scheduler that reorders instructions using
various priority policies.

In summary, most of the microarchitectural designs and opti-
mizations discussed above are fairly complex, but their complexity
lies in the details of how certain inputs influence the outputs. Pen-
sieve uses UFs to abstract these details while still allowing the model
to cover these design points.

Remark Despite the benefits discussed above, using uninterpreted
functions can yield a subtle limitation that the users should be
aware of. The design spaces covered by the UFs are often much
larger than what the designers intended to model and can poten-

Yuheng Yang, Thomas Bourgeat, Stella Lau, and Mengjia Yan

) L e |
DoM

CPU CPU
le— |Time —P le— [Time |e— Time

Mem L1 Cache Rest of Mem

Figure 4: A modeling example of speculative execution de-
fense. Left: a baseline memory hierarchy. Right: Delay-on-
Miss. Submodules using uninterpreted functions are high-
lighted.

tially include invalid design points. For example, the multiplier
model with value-based optimization allows any value to affect the
computation latency, but the intended design may only allow a sub-
set of values to affect the latency. In short, it can be challenging and
tedious to precisely model a concrete microarchitectural feature
using Pensieve’s modeling discipline.

The consequence of modeling a space larger than the intended
design space is two-fold. First, if the security evaluation on the
larger space passes, we know for sure, every design point in this
space is secure, including the designers’ intended ones. Second, if a
counterexample is found on the modeled space and this counterex-
ample is triggered by some unintended design points, we call this
counterexample a spurious one. We take a standard approach to
handle spurious counterexamples, that is, we can rule out spurious
counterexamples by adding constraints to UFs in our microarchi-
tectural model.

4.4 Modeling Defenses As Modular Add-ons

With our modeling discipline, a defense mechanism, in the form
of a modular augmentation to a baseline microarchitecture, can be
described by making modifications to the models of corresponding
modules. Since our model covers a space of designs with equivalent
functionality and different timing, modifying a defense corresponds
to reducing the space of the allowed timing behaviors: We summa-
rize three ways to apply such modifications.

(a) Carefully selecting the input argument of uninterpreted func-
tions. Removing an element from the argument makes the
output of the uninterpreted function independent of the
removed element.

(b) Wrapping an uninterpreted function with concrete functions
into a partially abstract function.

(c) Adding assumptions to an uninterpreted function so that it
does not cover arbitrary functions.

We provide examples to illustrate the approaches above by show-
ing how to model Delay-on-Miss [48]. We start by decomposing
the monolithic memory module into two separate modules, i.e.,
the L1 cache and the rest of the memory, shown in Figure 4. The
L1 cache uses uninterpreted functions inside both the functional-
ity and timing submodules, modeling different aspects of the L1
cache. The one in the functionality submodule determines whether
a memory request results in a cache hit or miss, modeling the cache
configurations that can affect cache hit activities, such as capacity,
associativity, and replacement policies. The one in the timing sub-
module determines when the L1 cache can take on a new request
and when a request/response can be forwarded, modeling varied
cache lookup, writeback latency, and bank/port contention between

Pensieve: Microarchitectural Modeling for Security Evaluation ISCA ’23, June 17-21, 2023, Orlando, FL, USA

Step 1: Input Specification Step 2: Model Checking (Sec 5.2) Step 3: Counterexample Inspection (Sec 5.3)

uhrch Mode i > Countore
Defense - R - Counterexample 0 pipeline view
Description Baseline (Sec 5.1) > 2 & [Observation
FR= i
+ Modular Add-on a5 Trace 2. Locate earliest
< Stzzter 'E_g’ Symbolic Counterexample || deviation point
- 'mbolic 7 —
Security Property };-erms u MRS ®[- Bindings of SymVars v
i - Bindings of UFs 3. Pinpoint the
Speculative Non- “uinerabilit

interference (Sec 3)

Figure 5: Pensieve Workflow.

concurrent requests.

To model DoM, we make the following changes to the L1 cache
module. First, DoM disallows any speculative requests to change
the L1 cache states that can affect cache hit/miss events. We use
approach (a) to model this feature. We take the uninterpreted func-
tion for determining whether a memory request is a cache hit or
miss and exclude the addresses of speculative memory requests
from the history input of this uninterpreted function. As a result,
cache hit/miss activities are independent of any previous specula-
tive requests.

Second, DoM disallows speculative L1 misses to be forwarded to
the rest of the memory hierarchy. We use approach (b) to model
this feature by adding a concrete function around the uninterpreted
function. Specifically, when the uninterpreted function generates
a cache miss and the request is speculative, the added concrete
function forces the functionality submodule to send a retry signal
to the CPU.

Though our modeling discipline is usually easy to use, we ac-
knowledge that sometimes, due to the ambiguity in describing a
defense mechanism using human language, it can be challenging to
figure out the precise constraints. Translating human language to a
formal microarchitectural model is a challenging research problem
that cannot be completely addressed by our modeling discipline,
but this paper is helping to make some progress.

5 PENSIEVE: FRAMEWORK AND
IMPLEMENTATION

Pensieve is an automatic security evaluation framework built upon
the microarchitectural modeling discipline in Section 4. It uses
bounded model checking to evaluate a defense scheme, encoded as
a parch model, against formally defined security properties, such
as the speculative non-interference property in Section 3.

Figure 5 shows the overview of the Pensieve framework and
its workflow. The workflow follows the standard model checking
process with each step being carefully tuned for users to effectively
evaluate speculative execution vulnerabilities.

In step 1, the user specifies the input to the framework, which
consists of a parch model and a security property. The challenge of
this process lies in converting a defense mechanism, which is usu-
ally described in human language, into a formally specified parch
model. In step 2, a model checker is used to perform automatic
security evaluation. The model checker uses symbolic execution to
perform bounded model checking of the parch model against the
specified security property. The model checker will either indicate

Correct Prediction Info

l l l SquashJ

. Decode
Func Time |) & | Func || Commit
Fetch Rename Dispatch
Time Time
ALU Memory

Figure 6: The baseline parch model with the submodules
using uninterpreted functions highlighted.

that the security property holds for a given number of cycles, or
generate a counterexample to indicate the discovery of a speculative
execution vulnerability. In step 3, the user inspects the counterex-
ample generated by Pensieve to locate the speculative execution
vulnerability in the evaluated defense mechanism.

5.1 Baseline yArch Model

We provide a baseline out-of-order processor model that users can
conveniently extend with a defense mechanism, expressed as a
modular add-on. The goal is to reduce the manual effort needed to
construct a parch model for the defense mechanism from scratch.

Our baseline parch model, though simple, covers a large de-
sign space and potentially complex pipeline scheduling policies.
In Figure 6, we highlight the submodules that use uninterpreted
functions. The fetch module models an arbitrary branch predictor
having an arbitrary fetch latency. This accounts for different laten-
cies introduced by varied complexity of the branch predictor and
varied instruction memory access latency. The dispatch module
uses an uninterpreted function to select which instruction to send
to the corresponding execution unit among the instructions whose
operands are ready. We use the toy examples from Section 4.1 as
the ALU and memory modules, which have been shown to cover a
large space.

Importantly, our modeling allows various types of instruction
reordering, primarily from two sources. First, as we use UFs inside
the timing modules of ALU and memory, each instruction can
take an arbitrary latency in the execution stage, and its dependent
instructions can be ready at an arbitrary cycle. Second, as we use
UFs inside the dispatch stage, the baseline parch model models a
wide range of issue policies that can reorder loads, stores, branches,

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

(a) Attack instruction sequence
and initial uArch states
// Msec[0] = 0, Msec'[0] = 1 Sec=0
// Mpub[1]=1,R0=0,R1 =1 0 1 2 3 4 5
Reec = Id RO // LD1 | |

if (RL==0){ //BR
_=1dRgec //LD3

<R1 = |d R1 // LD2 [A

Speculatio
e A [sta

Yuheng Yang, Thomas Bourgeat, Stella Lau, and Mengjia Yan

(b) Pipeline view of the execution traces

Sec =1 Fetch
01 2 3 4 5|6 7
| | Execute
b i Commit

Speculation
Tl sp paated

¥ fv % ‘ s Cycle)_a')_é_‘ . ‘ ., Cycle
CPU-Mem Trace } t }

(c) Traces for the signals between the CPU and the L1 cache

Figure 7: A counterexample generated by Pensieve for a parch model of DoM. In the CPU-Mem trace, a hollow node indicates a
memory request and a solid node is a response. The slashed nodes indicate that the memory requests differ in their addresses.

and arithmetic instructions as long as their operands are ready.

We note that our baseline parch model has concrete de-
code&rename and commit stages. We show our baseline parch
model was sufficient to find vulnerabilities in existing defenses in
our case studies and discuss its limitations in Section 8.

5.2 Model Checker

Pensieve automatically evaluates the security property of a parch
model using symbolic execution and bounded model checking. Step
2 in Figure 5 describes the evaluation process. First, we encode
the parch model as a finite state machine (FSM) with a set of state
bitvectors and a set of update logics. The state bitvectors of the FSM,
including the register content and memory content, are initialized
using symbolic terms. The update logic includes both concrete
cycle-by-cycle update functions and uninterpreted functions in
the given parch model. This encoding allows us to simulate the
execution of symbolic instruction sequences operating on symbolic
data.

Next, we execute the parch model for a bounded number of cy-
cles to derive a symbolic observation trace. Following the security
property definition in Section 3, we have a constraint on the soft-
ware program that it should not leak secrets when executing in
an ISA emulator. We add this constraint to the symbolic formula
before sending it to the SMT solver.

The SMT solver searches for counterexamples as follows. It tries
to assign a concrete value to every symbolic variable (called bind-
ing or variable-binding) and assign a concrete function to every
uninterpreted function, such that these bindings make the formula
evaluated to be false, which in our context means “a counterexam-
ple violates the security property.” The bindings for the symbolic
variables generate the model’s initial states where the instruction
memory stores the attack program. The bindings for the uninter-
preted functions manifest the raw execution trace, i.e., per-cycle
hand-shaking signals for every module.

Implementation We implement Pensieve on top of Racket and
the Rosette [51] solver-aided programming language, which uses an
SMT backend. Specifically, we encode the parch model and security
property in Rosette, and then leverage Rosette’s symbolic execution
and solver backend to search for a counterexample violating the
security property. Like most model checkers [20, 31, 40], Pensieve
can suffer from performance problems, limiting the number of
cycles that can be checked. We evaluate Pensieve’s performance in

Section 7.

5.3 Counterexample Inspection

The model checker outputs a counterexample when the parch model
does not satisfy the security property. A user can inspect the coun-
terexample to pinpoint the security vulnerability following three
steps. To assist the explanation, we show the counterexample for
the DoM parch model in Figure 7.

First, we convert the raw trace to a readable pipeline view. The
raw trace includes all the cycle-by-cycle handshaking signals for
inter-module communication. It looks similar to the waveform
graphs used for debugging synthesizable RTL code and is exhaustive
but difficult to read. To ease the inspection process, we convert this
raw trace into a readable pipeline view by giving each signal its
microarchitectural semantics based on which hardware modules
they are connected to. We also correlate each pipeline signal with
its corresponding instruction. We perform this process manually,
but it can be automated with visualization tools such as Konata [50].

Second, we locate the earliest point at which the two traces de-
fined in our security property deviate. We search all the timing
signal traces (for valid and ready signals, not the signals corre-
sponding to the data channels) and locate the one that exhibits the
earliest timing deviation.

Third, as a final step to pinpoint the security vulnerability, a user
needs to inspect the full information flow to figure out how the
secret reaches the earliest deviation point. As the timing signals
are usually generated using UFs, we can check the arguments for
the UF to locate which modules in the parch model introduce the
secret-dependent timing variations.

The DoM counterexample Figure 7 shows the counterexample
generated by Pensieve for the DoM parch model, with the attack
code sequence in Figure 7(a), pipeline view of the execution traces
in Figure 7(b), and traces for the signals between the CPU and the
L1 cache in Figure 7(c). We call the trace a CPU-Mem trace and
align it with the pipeline execution trace. This counterexample
indicates that the DoM parch model is vulnerable to a speculative
interference attack caused by contention inside the L1 cache.

To see why, we take a look at the attack code. The code indicates
that instructions LD1 and LD2 will commit, and instruction LD3 is a
transient load. According to the pipeline execution trace, the tran-
sient load LD3 issues a memory request at cycle 2 and looks up the
L1 cache. In the CPU-Mem trace, we find the transient instruction

Pensieve: Microarchitectural Modeling for Security Evaluation

LD3’s speculative cache access (the slashed node) influences the
committed instruction LD2’s memory access latency and commit
time. The counterexample will then drive the user (a computer
architect) to think about the cause of the interference and give mi-
croarchitectural meaning to the attack. In this DoM case, we think
the vulnerability exists because DoM allows speculative requests
to cause bank/port contention with non-speculative requests.

5.4 Understanding Pensieve’s Attack Coverage

Due to performance reasons, Pensieve’s attack coverage is con-
strained by the number of cycles it explores, i.e., 9 cycles as shown
later. However, a reader should not directly translate the 9 cycles
explored by Pensieve to the cycle count on a concrete processor,
as Pensieve can explore “worse-case” designs and executions of a
parch model.

Consider that real-world attacks often involve a large number of
instructions primarily for the following purposes: 1) precondition
microarchitecture states, e.g., mistraining the branch predictor or
priming the caches; 2) increase speculative execution window size
by introducing extra delays before a mispredicted branch; 3) ma-
nipulate the ordering of instructions across speculation windows
to expose or amplify the side effects of transmitter instructions.
Pensieve can generate compact counterexamples that reassemble
real-world attacks by exploring a “worst-case” design and execution
of the model such that an attack with a minimal number of instruc-
tions can work. This feature shares some similarities with how
CheckMate [52] models hardware and finds security vulnerabilities
by exploring only 6 instructions.

We can use the DoM counterexample to illustrate how Pensieve
accounts for the three phenomena observed in real-world attacks.
For example, in Figure 7, the BR instruction is mispredicted (phe-
nomenon 1). This misprediction is automatically generated by the
model checker without needing extra training instructions. Next,
the attack needs a long speculation window (phenomenon 2). The
model checker finds the binding of the UF in the memory module
to delay LD2, which in turn, delays the resolution time of the BR.
Finally, a real-world attack needs to fine-tune the issue time of mul-
tiple memory instructions to amplify L1 contention (phenomenon
3). As the UFs in the L1 cache allow any input to interfere with
the timing of its output, Pensieve’s model checker can easily find
the pair of inputs (different addresses of LD3) to expose the timing
variation.

6 CASE STUDY: GHOSTMINION

We used Pensieve to evaluate the security property of a series of
defense mechanisms, including DoM [48], InvisiSpec and its vari-
ants [3, 32, 47, 58], and GhostMinion [1]. We successfully found
vulnerabilities and generated valid attacks. Most of the counterex-
amples reassemble the speculative interference attacks described
in [7, 24], showing that Pensieve can systematically find known
vulnerabilities. Due to space limitations and for the reader’s interest,
we provide one detailed case study to showcase that Pensieve can
also find new vulnerabilities.

We present a case study evaluating GhostMinion [1], the state-
of-the-art defense scheme that is claimed to be resilient against
speculative interference attacks. Using Pensieve, we find Ghost-

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

x = Id addrouy if (false) {

= Id add
if (false) { . — i
} else {
y = Id addrgec

y x = |d addrpyp

(a) Interference attack ¥]
in prior work (b) New variant

Figure 8: Comparing the attack code pattern exploited in
prior work and the new variant found by Pensieve. Inter-
fering instructions are highlighted in gray, and transmitter
instructions are highlighted in yellow.

Minion does not achieve the speculative non-interference property
due to an implementation flaw in its timestamp generation scheme.
The generated attack leads to the discovery of a new speculative
interference attack variant.

A New Speculative Interference Attack Variant Before show-
ing the detailed security evaluation process of GhostMinion [1], let
us first present the new variant of speculative interference attack
found by our framework. Following the terminology used in [7], we
call a transient instruction that causes contention as an interfering
instruction, and a bound-to-commit instruction whose timing is
influenced as a transmitter instruction.

Figure 8(a) shows the gadget pattern exploited by prior work.
The interfering instruction (colored in gray) is younger than the
transmitter instruction (colored in yellow) in program order. Instead,
Figure 8(b) shows the gadget pattern found by our tool. There does
not exist a program order between the two instructions, such as
when the two instructions are from different sides of a branch.

To see how speculative interference attacks work with the new
code pattern, consider the following squash mechanism: a proces-
sor quickly resumes the execution following the correct code path
without waiting for the responses of outstanding memory requests
to return. The processor then relies on some bookkeeping mecha-
nisms at the load/store queue to drop any responses corresponding
to squashed instructions. Such a design is widely used in modern
processors for its high performance. With such a processor, after
a transient instruction squashes, its memory request can still be
in-flight in the memory system, clogging resources such as MSHRs,
and causing contention with the memory requests issued by bound-
to-commit instructions.

GhostMinion fails to achieve its desired security property be-
cause it has not considered our speculative interference attack
variant. Our case study highlights the necessity of formally eval-
uating defense mechanisms, rather than reasoning about security
using a limited set of known attack code patterns.

We now describe in detail how this counterexample was found
by presenting our modeling of GhostMinion in Section 6.1, dis-
cussing the counterexample inspection process in Section 6.2, and
proposing a security fix in Section 6.3.

6.1 Modeling GhostMinion

As with most defense proposals, GhostMinion [1] was described
in human language with unavoidable ambiguity about some de-
sign details. We attempt to precisely model GhostMinion’s timing
behaviors and minimize ambiguities.

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

First, GhostMinion uses an invisible speculation scheme similar
to Muontrap [3]. It allows speculative memory accesses to fetch
data from all levels of caches without changing persistent cache
states. The fetched data is stored in a small buffer (called GM) next
to the L1 cache and can only be accessed by speculative memory
requests. In our parch model, we model both the L1 cache and
the GM buffer. The L1 cache is modeled as with DoM by making
cache hit/miss independent of speculative memory requests, and the
GM buffer only affected by speculative memory requests. Besides,
upon the commit of a speculative memory access instruction, its
corresponding memory request will then be used to change the L1
cache state and thus influence future requests.

Second, GhostMinion enforces an ordering of using microarchi-
tecture resources based on program order. The processor maintains
a timestamp for each instruction. A scheduling policy is enforced
at each microarchitecture structure to give higher priority to older
instructions, which are associated with smaller timestamps. Ghost-
Minion also introduces a leapfrogging operation, i.e., cancel an
ongoing request or steal resources from the ongoing request, which
is essential to enforce the ordering. This priority ordering is ap-
plied to ALU units, MSHRs in caches, and any other structures that
can introduce speculative interference vulnerabilities. Note that
the leapfrogging operation is an extremely complex scheme whose
feasibility of being implemented is debatable. Yet, Pensieve can use
a simple model to capture this complex design.

We model the priority ordering and leapfrogging operation as
follows. We use an abstract delay buffer with a non-FIFO ordering
for each timing submodule and configure it to always select the data
with the smallest timestamp to forward to the output channel. In ad-
dition, we add constraints to uninterpreted functions to ensure that
the latency of a request with a smaller timestamp is independent of
all the requests with larger timestamps. Such a model precisely rep-
resents GhostMinion’s design by focusing on which factors affect
timing and avoids all the tedious implementation details related to
the leapfrogging operation.

Modeling Timestamp Generation One challenge in modeling
GhostMinion is that the GhostMinion paper does not clearly specify
how the timestamp is generated. We model three versions of the
timestamp generation process:

o Monotonic: The timestamp is incremented when an instruction
enters the decode&rename module. This is the version imple-
mented in the GhostMinion Gem5 simulator.

o Reset-upon-squash: The timestamp is incremented in the same
way as the Monotonic scheme but, upon squash, is reset to match
the timestamp of the last committed instruction. This is our
interpretation when reading the GhostMinion paper [1] and is
also suggested as a feasible scheme in [7].

o 2-tuple: Using Pensieve, we find that the previous two schemes are
insecure. We fix the vulnerability by proposing a secure scheme
that works on our baseline parch model.

6.2 Counterexample Inspection

We run the model checker on the parch model of GhostMinion
with the Monotonic and the Reset-upon-squash timestamp gen-
eration schemes. We find counterexamples in both cases, shown
in Figure 9. We mark each instruction with a timestamp before

10

Yuheng Yang, Thomas Bourgeat, Stella Lau, and Mengjia Yan

Timestamp Timestamp
Before After Before After
squash squash squash squash
Rgec = Id RO 0 Reec = Id RO 0
R1 = R1 *R1 1 R1 = R1 * R1 1
if (R1 ==0){ 2 if (R1 ==0){ 2
RO = Id Rgec 3 X RO = Id Rgec 3 X
N }
RO = Id RO 4 5 R1=0 4 3
RO = Id RO 5 4

(a) Monotonic (b) Reset-upon-squash

Figure 9: Attack code sequences that work on GhostMinion
with vulnerable timestamp generation schemes. Interfering
instructions are highlighted in gray, and transmitter instruc-
tions are highlighted in yellow.

or after a pipeline squash. Remark that the instructions after the
branch merge point enter the pipeline twice and so are given two
timestamps. The first timestamp corresponds to the case when the
instruction enters the pipeline as part of the mispredicted path, and
the second timestamp corresponds to the corrected path. We also
highlight interfering instructions and transmitter instructions with
different colors.

Figure 9(a) illustrates why the monotonic scheme is insecure.
Before the squash, the interfering and transmitter instructions are
both speculatively issued and assigned a timestamp of 3 and 4, re-
spectively. After the squash, the transmitter instruction re-enters
the pipeline and gets a new timestamp of 5. Even though the in-
terfering instruction is squashed, its memory request, which was
issued before the squash, is still in-flight in the memory system,
causing interference to the transmitter. Since the interfering in-
struction has a smaller timestamp, it has the priority to use any
microarchitecture structure.

Pensieve generates a very similar attack code for GhostMinion
using the reset-upon-squash scheme, shown in Figure 9(b). The
only difference is the existence of a dummy instruction before the
transmitter instruction. With such an attack code, the interfering
instruction gets the same timestamp as before, and the transmitter
instruction gets a timestamp of 4 after the squash. Similar to before,
the transmitter instruction’s timestamp is larger than the interfering
instruction’s, and speculative interference attacks still work.

Problems of Using Gem5 For Security Evaluation To further
demonstrate the validity of our discovered attack examples, we
planned to implement a proof-of-concept attack on the GhostMin-
ion Gem5 simulator. However, we find that the simulator open-
sourced by the authors [2] does not implement the leapfrogging
operations. Instead, the simulator collects statistics about how
frequently a leapfrogging operation is needed. Such modeling is
roughly sufficient for estimating the performance overhead intro-
duced by the leapfrogging operation, but leaves the GhostMinion
implementation vulnerable to the original speculative interference
attacks.

This experience re-emphasizes our claim in Section 1 that mi-
croarchitectural simulators designed for performance evaluation
are not trustworthy for security evaluation. Even though Gem5 is
one of the few simulators that model speculative execution in detail,

Pensieve: Microarchitectural Modeling for Security Evaluation

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

—— ROB Size = 16 —— ROB Size = 8 —— ROB Size = 4 ROB Size = 2 @ no counterexample X counterexample

E 10* 104 104

E 103 103 103

g 100 100 45//& 100

= 10 >z 10 Fo 10

2 : / . W .

¥ 0.1 0.1 0.1

] ¢

S 4 5 6 7 8 9 4 5 6 7 8 9 4 5 6 7 8 9 4 5 6 7 8 9

Simulated Cycle
(a) Baseline O3 Processor

Simulated Cycle
(b) Delay-on-miss

Simulated Cycle
(c) Invisible Speculation

Simulated Cycle
(d) GhostMinion

Figure 10: The time taken by the model checker to evaluate 4 parch models with different ROB sizes and simulation cycles.

when modified by a user to augment a defense mechanism, critical
timing constraints may be omitted for convenience or better simu-
lation speed. It is essential to design a proper microarchitectural
modeling approach that captures precise timing characteristics for
security evaluation, like the one proposed in this paper.

6.3 Fixing The Vulnerability

Leveraging the counterexamples, we try to propose a secure times-
tamp generation scheme to fix the security vulnerability in Ghost-
Minion. A straightforward idea is to use a tuple of <speculative
window ID, instruction ID> as a timestamp. The speculative window
ID is incremented when a squash happens, and the instruction ID is
incremented either following the monotonic or reset-upon-squash
scheme. A priority is given to timestamps with a larger speculative
window ID and a smaller instruction ID. Note that, this scheme only
works for our baseline microarchitecture, where a branch squashes
when it reaches the head of ROB, and will not work with processors
implementing nested speculative branch squashes.

We find the 2-tuple timestamp generation scheme on our baseline
microarchitecture reassembles a concrete implementation of the
Temporal Ordering, discussed in the GhostMinion paper. Therefore,
we conclude a fair comment on GhostMinion as follows: “Enforcing
temporal ordering on microarchitecture resource usage is an effec-
tive defense mechanism to achieve the speculative non-interference
property. However, it is non-trivial to have a correct hardware im-
plementation of temporal ordering that work for a large space of
processor designs. The implementation presented in the GhostMin-
ion paper is incorrect”

7 PERFORMANCE EVALUATION
7.1 Experiment Setup

We evaluate Pensieve’s performance on four parch models: 1) the
baseline microarchitecture, 2) Delay-on-Miss [48], 3) Invisible Spec-
ulation (a parch model covering InvisiSpec [58], SafeSpec [32],
GhostLoads [47], Muontrap [3]), and 4) GhostMinion [1].

These parch models support 5 types of instructions: load imme-
diate, load register, store register, branch, and register-to-register
operation. Each model has a 4-entry register file, a 16-entry instruc-
tion memory, and a 4-entry data memory. The ISA emulator and
baseline out-of-order processor were implemented in Rosette using
~400 and ~2400 lines of code (LOC), respectively. Adding Delay-on-
Miss, InvisiSpec, and GhostMinion on top of the baseline processor
required approximately 100, 100, and 250 LOC, respectively. The
performance results were obtained on a server machine with an
Intel Xeon 5220R processor running at 2.2 GHz.

11

Like most model checking tools [20, 31, 36, 40], Pensieve can
suffer from performance problems that limit the number of cycles
that it can check. Our implementation of the model checker in-
cludes a commonly used optimization [4, 43], that is, concretization
by forcing case analysis on symbolic terms. In our parch model,
we need to decode the opcode for each instruction and then trig-
ger different execution logic accordingly. We use the split-case
interface in Rosette to perform concretization in decoding instruc-
tion opcodes. This optimization improves performance as it avoids
monotonically accumulating constraints on a single large symbolic
formula, enables evaluating multiple shorter formulas, and reduces
the workload for the backend solver.

7.2 Evaluation Results

Figure 10 shows the end-to-end execution time of the model check-
ing tool for each model with varied ROB sizes (different lines) and
evaluation cycles (the x-axes). Dots represent the cases when no
counterexamples are found and crosses (“x”) are when counterex-
amples are found. If the execution time is above 10? minutes (~7
days), it is considered as a timeout and will not be shown in the
figure.

From Figure 10(a)-(d), we observe as expected that the checking
time increases exponentially as the number of simulated cycles in-
creases (the y-axes use log-scale). For example, when evaluating the
baseline parch model with 16 ROB entries and increasing the num-
ber of simulation cycles from 6 to 7 and 8, checking time increases
from 2.5 minutes to 7.5 minutes and 26 minutes, respectively.

For different defense mechanisms, it takes different numbers
of simulation cycles to find counterexamples. It takes no more
than 4 cycles to find a counterexample on the baseline, DoM, and
InvisiSpec and at least 8 cycles on GhostMinion.

We also observe that the ROB size affects both the checking time
and whether we can find a counterexample. Since the ROB size
directly affects the model complexity, the checking time generally
increases as the ROB size increases. Besides, the ROB size deter-
mines the number of concurrent instructions and the level of timing
interference between instructions. In Figure 10(b), when evaluating
DoM, we only find counterexamples when the ROB size is at least
4.

Finally, Figure 10(d) shows that it can sometimes take less time
to find a counterexample than to guarantee that no counterexam-
ples can be found, e.g., comparing the checking time of simulating
7 and 8 cycles. This is because the tool terminates as soon as a
counterexample is found, but in the case of no counterexamples,
the model checker studies all reachable states.

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

Discussion From the analysis above, we identify three key factors
that affect the performance of our model checker. First, the number
of simulated cycles is the most important limiting factor, as the
checking time increases exponentially with the simulated cycles.
Second, it usually takes significantly more time to evaluate a “more
secure” design. If a parch model satisfies the security property,
the checker needs to study all reachable states, resulting in a long
execution time. Third, increasing the ROB size in a garch model will
increase the number of state bits of the model and thus increases
the checking time. We observe that the checking time is increased
by around 2-3 times each time we double the ROB size.

8 LIMITATIONS AND FUTURE WORK

This paper has several limitations. First, we made several simpli-
fications to our baseline parch model. These simplifications limit
the strength of the security claim in the case that no counterex-
amples are found. For example, our current baseline garch model
has concrete decode&rename and commit stages, and supports a
limited number of instruction types, registers, and memory entries.
A defense designer wanting to evaluate the security of a defense on
a larger space of baseline microarchitectures would need to extend
the parch model by, e.g., further decomposing the concrete modules
and using more abstract delay buffers.

Relatedly, we only conduct bounded model checking up to 9
steps for performance reasons and thus, if a counterexample is
not found, can not guarantee the absence of vulnerabilities taking
more than 9 steps to exploit. This performance problem arises
from the formal analysis method used in Pensieve, i.e., bounded
model checking. Future work can address the scalability issues by
using symbolic execution optimizations [4, 43] or, better yet, using
more scalable formal analysis techniques such as invariant-based
induction proofs in conjunction with Pensieve’s modeling approach.
However, these techniques tend to require more manual effort and
formal methods expertise, as opposed to a “push-button” tool that
computer architects can conveniently use.

In addition, Pensieve focuses on early-stage designs and it was
a non-goal to evaluate the security of RTL designs. Pensieve can
be used to derive the specifications for RTL modules. Checking
whether an RTL implementation implements a given parch model
is orthogonal but important future work.

Finally, we only used Pensieve to evaluate designs against spec-
ulative non-interference. It would be a straightforward extension
to substitute similar security properties such as speculative data
obliviousness, so that we would be able to evaluate schemes such as
STT [60], NDA [55], etc [5, 38, 59]. However, Pensieve only models
deterministic designs and does not support probabilistic security
properties in designs, and will not be able to evaluate designs such
as CleanupSpec [46].

9 RELATED WORK

We discuss related work on performing formal security evaluation
of microarchitectural defenses against speculative execution at-
tacks. We identify that previous approaches differ along two axes:
1) the modeling approach, 2) the security evaluation techniques
and properties.

Modeling Microarchitectures A number of verification projects

12

Yuheng Yang, Thomas Bourgeat, Stella Lau, and Mengjia Yan

including IntroSpector [25] and UPEC [21-23] directly operate
on synthesizable RTL and thus verify a concrete implementation.
However, as discussed in Section 1.1, this is an orthogonal prob-
lem to evaluating early-stage designs as architects usually do not
want to implement RTL before being confident about what security
property their design guarantees.

On the abstract modeling side, CheckMate [52] and axiomatic
LCM [42] use an axiomatic modeling approach to describe a proces-
sor design as a phb graph. Hsiao et al. further demonstrate that such
a model can be automatically synthesized from RTL [30]. Guarnieri
et al. [28, 29] and Guanciale et al. [27] define an operational model
of out-of-order processors. Their models are monolithic and do
not have an explicit notion of timing. A difference between those
two kinds of work is also the style in which the models are writ-
ten. [42, 52] use an axiomatic style, while Guarnieri et al. [28, 29]
and Guanciale et al. [27] follow an operational style. Both model-
ing approaches are far from the way computer architects propose
early-stage designs.

Security Evaluation Techniques and Properties Pensieve and
UPEC [21-23] both use automatic model checking techniques.
UPEC combines model checking with manual invariants to obtain
a security guarantee on an unbounded number of cycles. Guarnieri
et al. [28] use manual proof. CheckMate [52] uses relational model
finding. CheckMate’s security property is derived from security lit-
mus tests and the tools try to find new exploits from those patterns.
Another set of work uses fuzzing to find new vulnerabilities in RTL
or blackbox hardware, including IntroSpectre [25], Medusa [41],
SpeechMiner [57], Osiris [54], and Revisor [45]. These approaches
are effective but do not provide formal reasoning of the designs.

In addition to the work on verifying hardware defenses, there is
extensive work on verifying software against speculative execution
attacks [13, 14, 42, 53, 56].

10 CONCLUSION

Correctly modeling and evaluating a defense mechanism usually
requires extensive formal-methods expertise and it is difficult to
reason about whether the modeling reflects the designer’s ideas.
Pensieve is a step towards addressing this problem. Pensieve is
a security evaluation framework targeting the analyses of early-
stage microarchitectural defenses against speculative execution
attacks. We presented a microarchitectural modeling discipline for
early-stage defenses that precisely captures timing variations due
to contention and microarchitectural optimizations. We used Pen-
sieve to automatically analyze a series of state-of-the-art defenses.
Pensieve can not only synthesize known attacks, but also find subtle
bugs that were not known before in complex systems.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback.
This work was funded in part by the National Science Founda-
tion (NSF) under grants CNS-2046359 and CCF-2217099, the Air
Force Office of Scientific Research (AFOSR) under grants FA9550-
20-1-0402 and FA9550-22-1-0511, MIT Research Support Commit-
tee (RSC), and gifts from Amazon and Intel.

Pensieve: Microarchitectural Modeling for Security Evaluation

A ARTIFACT APPENDIX
A.1 Abstract

Our artifact is the implementation of the Pensieve framework
(Figure 5) for the security evaluation of microarchitectural defenses
against speculative execution attacks. The artifact includes parch
models for a variety of defense mechanisms encoded in a solver-
based programming language (i.e., Rosette), and scripts for per-
forming bounded model checking on these parch models for coun-
terexample detection. This artifact release can be used to reproduce
the two attack examples as shown in Figure 7 and Figure 9(a), as
well as the performance evaluation results for the checking time as
shown in the plots in Figure 10.

A.2 Artifact check-list (meta-information)

e Run-time environment: Docker engine and docker compose. Al-
ternatively, for a physical machine setup, it requires Racket, Rosette,
Boolector, and Dask (or HTcondor).

e Hardware: One 16(or more)-core machine with 2GB memory per
core.

e Output: Terminal outputs and a figure. Expected results are in-
cluded.

e Experiments: Running provided scripts in a provided container

will reproduce the results. Results might vary due to the black-box

SMT solver.

How much disk space required (approximately)?: 3GB.

e How much time is needed to prepare workflow (approxi-
mately)?: 20 minutes.

o How much time is needed to complete experiments (approx-

imately)?: On a 16(or more)-core machine, it takes ~12 hours to

complete most (125 of 130) experiments and ~7 days to complete all
experiments.

Publicly available?: Yes.

Code licenses (if publicly available)?: MIT license.

Archived (provide DOI)?: 10.5281/zenodo. 7751221

A.3 Description

A.3.1 How to access. The artifact version designed for reproducing
results in the paper can be downloaded from https://doi.org/10.5281/
zenodo.7751221. The newest version of the Pensieve framework is
available at https://github.com/CSAIL- Arch-Sec/Pensieve.

A.3.2 Hardware dependencies. The framework only requires CPU
and memory resources. When using it to evaluate a specific parch
model configuration for a specific bounded number of cycles, it will
only use 1 core. We also provide scripts to run batches of experi-
ments for different configurations in parallel and thus recommend
a 16(or more)-core machine to finish them in a shorter time. 2GB
memory per core is required.

A.3.3 Software dependencies. To try out our framework or to re-
produce the results in the paper, only the docker engine and docker
compose are required. You can also set up physical machines for
further exploration by referring to the Dockerfile provided. Specif-
ically, it will guide you to install Racket, Rosette, Boolector, and
Dask (or HTcondor).

13

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

A.4 Installation

Make sure that the docker engine is installed on your system and
docker-compose command is available. The commands below will
take ~10 minutes to build a container and start a bash inside it.

1 cd Pensieve

2 docker -compose up -d

3 docker -compose exec env bash

1 cd /vagrant

The Pensieve folder has been mounted at /vagrant in the con-

tainer. All commands below should be run when pwd is this folder.
After the experiment, running docker-compose down -rmi all
can clean up everything.

A.5 Evaluation and expected results

Reproduce the Attack Example in Figure 7 Running the com-
mand below will generate terminal output expected to be similar
to result/DoM. log with ~10 seconds. It will only use 1 core.

1 raco test \

2 ++arg --param-saved-params ++arg DoM \

3 ++arg --param-saved-sizes ++arg DoM \

4 src/main_veriSpec.rkt

To understand the terminal output, the “Finish SMT Result

Evaluation" splits the output into two parts. The output below it
summarizes the attack instruction sequence and the initial parch
model states, which are used to draw Figure 7(a). The output above
it includes detailed execution traces of running the attack program
with two different secrets, which are used to draw Figure 7(b)(c).
Please refer to README . md for more documentation on the terminal
output and how to customize the output to get more information
about the execution traces.

Reproduce the Attack Example in Figure 9(a). Running the
command below will generate terminal output expected to be sim-
ilar to result/GhostMinion.log with ~10 minutes. It will only
use 1 core.

1 raco test \

2 ++arg --param-saved-params ++arg GhostMinion \

3 ++arg --param-saved-sizes ++arg GhostMinion \

4 src/main_veriSpec.rkt

The terminal output is organized the same as the last one. The at-

tack instruction sequence is used to draw Figure 9(a). The execution
traces can help you understand the steps of the attack.

Reproduce the Performance Evaluation in Figure 10. Running
the commands below will reproduce a figure expected to be similar
to result/Figurel@/performance.pdf with ~7 days. However,
most (123 out of 128) experiments will finish with ~10 hours, which
are enough to plot most data points in the figure. The experiments
will use all cores on the machine by default. You can also limit the
core number to 16 by editing script/run_helper_local.py (ie.
commenting Line 8 and uncommenting Line 9). After ~10 hours,
only 5 cores will be busy for the rest 5 experiments.

https://doi.org/10.5281/zenodo.7751221
https://doi.org/10.5281/zenodo.7751221
https://github.com/CSAIL-Arch-Sec/Pensieve

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

1# You will reproduce two files in this folder
2cp -r result/Figurel® result/artifact_eval

3 rm result/artifact_eval/summary. json

4rm result/artifact_eval/performance.pdf

5

6 # This command will take ~7 days in background
7 (python3 -u result/artifact_eval/run_local.py \
8 > terminal.log 2>&1 &)

9

10 # Plot a partial figure after ~10 hours

11 python3 result/artifact_eval/summary.py

12 python3 result/artifact_eval/plot.py

13

14 # Re-run two lines of commands above

15 # after ~7 days for a whole figure

Running the commands above will generate the following file:
result/artifact_eval/performance.pdf This file is expected
to be similar to Figure 10. Specifically, at each configuration, the
reproduced result should be consistent with Figure 10 on whether
a counterexample exists. However, the checking time and whether
a configuration runs timeout after 7 days can vary due to the im-
plementation of the black-box SMT solver and the performance of
the machine.

In addition, raw numbers shown in the figure are saved in
result/artifact_eval/summary.json and can be printed on the
terminal by running python3 result/artifact_eval/print.py.

A.6 Methodology

Submission, reviewing and badging methodology:

o https://www.acm.org/publications/policies/artifact-review-
badging

e http://cTuning.org/ae/submission-20201122.html

o http://cTuning.org/ae/reviewing-20201122.html

REFERENCES

[1] Sam Ainsworth. 2021. GhostMinion: A Strictness-Ordered Cache System for
Spectre Mitigation. In 54th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO). ACM. https://doi.org/10.1145/3466752.3480074

Sam Ainsworth. 2022. Artefact Evaluation for GhostMinion. https://github.com/

SamAinsworth/reproduce-ghostminion-paper. Accessed 26 October 2022.

[3] Sam Ainsworth and Timothy M. Jones. 2020. MuonTrap: Preventing Cross-
Domain Spectre-like Attacks by Capturing Speculative State. In Proceedings of
the ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE. https://doi.org/10.1109/ISCA45697.2020.00022

[4] Anish Athalye, M. Frans Kaashoek, and Nickolai Zeldovich. 2022. Verifying
Hardware Security Modules with Information-Preserving Refinement. In 16th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 22).
USENIX Association.

[5] Kristin Barber, Anys Bacha, Li Zhou, Yingian Zhang, and Radu Teodorescu. 2019.
SpecShield: Shielding Speculative Data from Microarchitectural Covert Channels.
In 2019 28th International Conference on Parallel Architectures and Compilation
Techniques (PACT). IEEE. https://doi.org/10.1109/PACT.2019.00020

[6] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt,

Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres

Notzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare

Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT

Solver. In Tools and Algorithms for the Construction and Analysis of Systems -

28th International Conference, TACAS 2022, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany,

April 2-7, 2022, Proceedings, Part I https://doi.org/10.1007/978-3-030-99524-9_24

Mohammad Behnia, Prateek Sahu, Riccardo Paccagnella, Jiyong Yu, Zirui Neil

Zhao, Xiang Zou, Thomas Unterluggauer, Josep Torrellas, Carlos Rozas, Adam

Morrison, Frank Mckeen, Fangfei Liu, Ron Gabor, Christopher W. Fletcher, Ab-

hishek Basak, and Alaa Alameldeen. 2021. Speculative Interference Attacks:

Breaking Invisible Speculation Schemes. In Proceedings of the 26th ACM Inter-

[2

=

14

Yuheng Yang, Thomas Bourgeat, Stella Lau, and Mengjia Yan

national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM. https://doi.org/10.1145/3445814.3446708
[8] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-
dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. 2019. SMoTherSpec-
tre: Exploiting Speculative Execution through Port Contention. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security.
ACM. https://doi.org/10.1145/3319535.3363194
[9] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. ACM SIGARCH Computer
Architecture News (2011). https://doi.org/10.1145/2024716.2024718
M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra. 1986. Automatic Verification
of Sequential Circuits Using Temporal Logic. IEEE Trans. Comput. (1986). https:
//doi.org/10.1109/TC.1986.1676711
J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan, and D.L. Dill. 1994. Symbolic
model checking for sequential circuit verification. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (1994). https://doi.org/10.1109/
43.275352
Cadence Design Systems, Inc. 2022. Jasper RTL Apps. http://www.jasper-da.
com/products/jaspergold-apps. Accessed 26 October 2022.
Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall, Dean Tullsen, Deian
Stefan, Tamara Rezk, and Gilles Barthe. 2020. Constant-Time Foundations for
the New Spectre Era. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). ACM. https://doi.
org/10.1145/3385412.3385970
Kevin Cheang, Cameron Rasmussen, Sanjit Seshia, and Pramod Subramanyan.
2019. A Formal Approach to Secure Speculation. In 2019 IEEE 32nd Computer
Security Foundations Symposium (CSF). IEEE. https://doi.org/10.1109/CSF.2019.
00027
Md Hafizul Islam Chowdhuryy and Fan Yao. 2021. Leaking Secrets through
Modern Branch Predictor in the Speculative World. IEEE Trans. Comput. (2021).
https://doi.org/10.1109/TC.2021.3122830
Edmund Clarke, Orna Grumberg, Daniel Kroening, Doron Peled, and Helmut
Veith. 2018. Model Checking, second edition. MIT Press.
E.M. Clarke, D.E. Long, and K.L. McMillan. 1991. A language for compositional
specification and verification of finite state hardware controllers. Proc. [EEE
(1991). https://doi.org/10.1109/5.97298
E. M. Clarke, E. A. Emerson, and A. P. Sistla. 1986. Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic Specifications. ACM
Trans. Program. Lang. Syst. (1986). https://doi.org/10.1145/5397.5399
Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT Solver. In
Proceedings of the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. Springer-
Verlag.
David L. Dill. 1996. The Murphi verification system. In Computer Aided Verifica-
tion. Springer Berlin Heidelberg.
Mohammad Rahmani Fadiheh, Johannes Miiller, Raik Brinkmann, Subhasish
Mitra, Dominik Stoffel, and Wolfgang Kunz. 2020. A Formal Approach for
Detecting Vulnerabilities to Transient Execution Attacks in Out-of-Order Pro-
cessors. In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE.
https://doi.org/10.1109/DAC18072.2020.9218572
Mohammad Rahmani Fadiheh, Dominik Stoffel, Clark Barrett, Subhasish Mitra,
and Wolfgang Kunz. 2019. Processor Hardware Security Vulnerabilities and their
Detection by Unique Program Execution Checking. In 2019 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE. https://doi.org/10.23919/
DATE.2019.8715004
Mohammad Rahmani Fadiheh, Alex Wezel, Johannes Muller, Jorg Bormann,
Sayak Ray, Jason M. Fung, Subhasish Mitra, Dominik Stoffel, and Wolfgang
Kunz. 2022. An Exhaustive Approach to Detecting Transient Execution Side
Channels in RTL Designs of Processors. IEEE Trans. Comput. (2022). https:
//doi.org/10.1109/TC.2022.3152666
Jacob Fustos, Michael Bechtel, and Heechul Yun. 2020. SpectreRewind: Leaking Se-
crets to Past Instructions. In Proceedings of the 4th ACM Workshop on Attacks and
Solutions in Hardware Security. ACM. https://doi.org/10.1145/3411504.3421216
Moein Ghaniyoun, Kristin Barber, Yingian Zhang, and Radu Teodorescu. 2021.
IntroSpectre: A Pre-Silicon Framework for Discovery and Analysis of Transient
Execution Vulnerabilities. In Proceedings of the 48th Annual International Sympo-
sium on Computer Architecture (ISCA). IEEE. https://doi.org/10.1109/ISCA52012.
2021.00073
Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation
Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks.
In 27th USENIX Security Symposium (USENIX Security 18). USENIX Association.
Roberto Guanciale, Musard Balliu, and Mads Dam. 2020. InSpectre: Breaking
and Fixing Microarchitectural Vulnerabilities by Formal Analysis. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security.
ACM. https://doi.org/10.1145/3372297.3417246
[28] Marco Guarnieri, Boris Kopf, Jan Reineke, and Pepe Vila. 2021. Hardware-

[12

[13

=
&

[15

[16

[17]

(18]

=
2

[20

[21]

[22]

[23

[24

[25

™
oY

[27

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://doi.org/10.1145/3466752.3480074
https://github.com/SamAinsworth/reproduce-ghostminion-paper
https://github.com/SamAinsworth/reproduce-ghostminion-paper
https://doi.org/10.1109/ISCA45697.2020.00022
https://doi.org/10.1109/PACT.2019.00020
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1145/3445814.3446708
https://doi.org/10.1145/3319535.3363194
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/TC.1986.1676711
https://doi.org/10.1109/TC.1986.1676711
https://doi.org/10.1109/43.275352
https://doi.org/10.1109/43.275352
http://www.jasper-da.com/products/jaspergold-apps
http://www.jasper-da.com/products/jaspergold-apps
https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1109/CSF.2019.00027
https://doi.org/10.1109/CSF.2019.00027
https://doi.org/10.1109/TC.2021.3122830
https://doi.org/10.1109/5.97298
https://doi.org/10.1145/5397.5399
https://doi.org/10.1109/DAC18072.2020.9218572
https://doi.org/10.23919/DATE.2019.8715004
https://doi.org/10.23919/DATE.2019.8715004
https://doi.org/10.1109/TC.2022.3152666
https://doi.org/10.1109/TC.2022.3152666
https://doi.org/10.1145/3411504.3421216
https://doi.org/10.1109/ISCA52012.2021.00073
https://doi.org/10.1109/ISCA52012.2021.00073
https://doi.org/10.1145/3372297.3417246

Pensieve: Microarchitectural Modeling for Security Evaluation

[29]

[30]

[31]

[32

(33

[34]

[35]

[36]

[37

[38

w
A

[40]

[41

[42

[43

[44]

[45]

software contracts for secure speculation. In 2021 IEEE Symposium on Security
and Privacy (SP). IEEE. https://doi.org/10.1109/SP40001.2021.00036

Marco Guarnieri, Boris Kopf, José F. Morales, Jan Reineke, and Andrés Sanchez.
2020. Spectector: Principled Detection of Speculative Information Flows. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE. https://doi.org/10.1109/
SP40000.2020.00011

Yao Hsiao, Dominic P. Mulligan, Nikos Nikoleris, Gustavo Petri, and Caroline
Trippel. 2021. Synthesizing Formal Models of Hardware from RTL for Effi-
cient Verification of Memory Model Implementations. In MICRO-54: 54th An-
nual IEEE/ACM International Symposium on Microarchitecture. ACM. https:
//doi.org/10.1145/3466752.3480087

Ranjit Jhala and Kenneth L. McMillan. 2001. Microarchitecture Verification by
Compositional Model Checking. In Proceedings of the 13th International Conference
on Computer Aided Verification. Springer-Verlag.

Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry
Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2019. SafeSpec: Ban-
ishing the Spectre of a Meltdown with Leakage-Free Speculation. In Proceed-
ings of the 56th Annual Design Automation Conference 2019. ACM. https:
//doi.org/10.1145/3316781.3317903

Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative buffer overflows:
Attacks and defenses. arXiv preprint arXiv:1807.03757 (2018).

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
2019 IEEE Symposium on Security and Privacy (SP). https://doi.org/10.1109/SP.
2019.00002

Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and
Nael Abu-Ghazaleh. 2018. Spectre Returns! Speculation Attacks using the Return
Stack Buffer. In 12th USENLX Workshop on Offensive Technologies (WOOT 18).
USENIX Association.

Leslie Lamport. 2002. Specifying systems: the TLA+ language and tools for hardware
and software engineers. Addison-Wesley Longman Publishing Co., Inc.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from
User Space. In 27th USENIX Security Symposium (USENIX Security 18). USENIX
Association.

Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai, Ofir Weisse, Satish
Narayanasamy, and Baris Kasikci. 2021. DOLMA: Securing Speculation with the
Principle of Transient Non-Observability. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association.

Giorgi Maisuradze and Christian Rossow. 2018. Ret2spec: Speculative Execution
Using Return Stack Buffers. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM. https://doi.org/10.1145/3243734.
3243761

KL McMillan and J Schwalbe. 1992. Formal verification of the Gigamax Cache
Consistency Protocol. In Proceedings of the International Symposium on Shared
Memory Multiprocessing.

Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz. 2020. Medusa:
Microarchitectural Data Leakage via Automated Attack Synthesis. In 29th USENIX
Security Symposium (USENIX Security 20). USENIX Association.

Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and Caroline Trippel. 2022.
Axiomatic Hardware-Software Contracts for Security. In Proceedings of the 49th
Annual International Symposium on Computer Architecture. ACM. https://doi.
org/10.1145/3470496.3527412

Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak,
and Xi Wang. 2019. Scaling Symbolic Evaluation for Automated Verification
of Systems Code with Serval. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles. ACM. https://doi.org/10.1145/3341301.3359641
Aina Niemetz, Mathias Preiner, and Armin Biere. 2014. Boolector 2.0. J. Satisf.
Boolean Model. Comput. (2014). https://doi.org/10.3233/sat190101

Oleksii Oleksenko, Christof Fetzer, Boris Kopf, and Mark Silberstein. 2022.

15

[46

[47

S
&

[49

[50

[51

[52

o
&

[54

[55]

[56]

o
=)

[58

[59

=
=2

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

Revizor: Testing Black-Box CPUs against Speculation Contracts. In Proceed-
ings of the 27th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS 2022). ACM. https:
//doi.org/10.1145/3503222.3507729

Gururaj Saileshwar and Moinuddin K Qureshi. 2019. Cleanupspec: An" undo”
approach to safe speculation. In Proceedings of the 52nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture.

Christos Sakalis, Mehdi Alipour, Alberto Ros, Alexandra Jimborean, Stefanos
Kaxiras, and Magnus Sjalander. 2019. Ghost Loads: What is the Cost of Invis-
ible Speculation?. In Proceedings of the 16th ACM International Conference on
Computing Frontiers. ACM. https://doi.org/10.1145/3310273.3321558

Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean, and Mag-
nus Sjalander. 2019. Efficient Invisible Speculative Execution through Selective
Delay and Value Prediction. In Proceedings of the 46th International Symposium
on Computer Architecture (ISCA). ACM. https://doi.org/10.1145/3307650.3322216

Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss.
2019. NetSpectre: Read Arbitrary Memory over Network. In Computer Security

— ESORICS 2019: 24th European Symposium on Research in Computer Security,
Luxembourg, September 23-27, 2019, Proceedings, Part I Springer-Verlag. https:
//doi.org/10.1007/978-3-030-29959-0_14

Ryota Shioya. 2022. Konata. https://github.com/shioyadan/Konata. Accessed 26
October 2022.

Emina Torlak and Rastislav Bodik. 2013. Growing Solver-Aided Languages
with Rosette. In Proceedings of the 2013 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming & Software. ACM. https:
//doi.org/10.1145/2509578.2509586

Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2018. CheckMate: Auto-
mated Synthesis of Hardware Exploits and Security Litmus Tests. In Proceedings
of the 51st Annual IEEE/ACM International Symposium on Microarchitecture. IEEE.
https://doi.org/10.1109/MICRO.2018.00081

Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and
Abhik Roychoudhury. 2021. 007: Low-Overhead Defense Against Spectre Attacks
via Program Analysis. IEEE Transactions on Software Engineering (2021). https:
//doi.org/10.1109/TSE.2019.2953709

Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz, and Christian
Rossow. 2021. Osiris: Automated Discovery of Microarchitectural Side Channels.
In 30th USENIX Security Symposium (USENIX Security 21). USENIX Association.
Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F. Wenisch, and Baris Kasikci. 2019.
NDA: Preventing Speculative Execution Attacks at Their Source. In Proceedings of
the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. ACM.
https://doi.org/10.1145/3352460.3358306

Meng Wu and Chao Wang. 2019. Abstract Interpretation under Speculative
Execution. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM. https://doi.org/10.1145/3314221.
3314647

Yuan Xiao, Yingian Zhang, and Radu Teodorescu. 2020. SPEECHMINER: A Frame-
work for Investigating and Measuring Speculative Execution Vulnerabilities. In
Network and Distributed System Security Symposium.

Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher W.
Fletcher, and Josep Torrellas. 2018. InvisiSpec: Making Speculative Execution
Invisible in the Cache Hierarchy. In Proceedings of the 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE. https://doi.org/10.
1109/MICRO.2018.00042

Jiyong Yu, Namrata Mantri, Josep Torrellas, Adam Morrison, and Christopher W.
Fletcher. 2020. Speculative Data-Oblivious Execution: Mobilizing Safe Prediction
for Safe and Efficient Speculative Execution. In Proceedings of the ACM/IEEE 47th
Annual International Symposium on Computer Architecture. IEEE Press. https:
//doi.org/10.1109/ISCA45697.2020.00064

Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and
Christopher W. Fletcher. 2019. Speculative Taint Tracking (STT): A Com-
prehensive Protection for Speculatively Accessed Data. In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture. ACM.
https://doi.org/10.1145/3352460.3358274

https://doi.org/10.1109/SP40001.2021.00036
https://doi.org/10.1109/SP40000.2020.00011
https://doi.org/10.1109/SP40000.2020.00011
https://doi.org/10.1145/3466752.3480087
https://doi.org/10.1145/3466752.3480087
https://doi.org/10.1145/3316781.3317903
https://doi.org/10.1145/3316781.3317903
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1145/3243734.3243761
https://doi.org/10.1145/3243734.3243761
https://doi.org/10.1145/3470496.3527412
https://doi.org/10.1145/3470496.3527412
https://doi.org/10.1145/3341301.3359641
https://doi.org/10.3233/sat190101
https://doi.org/10.1145/3503222.3507729
https://doi.org/10.1145/3503222.3507729
https://doi.org/10.1145/3310273.3321558
https://doi.org/10.1145/3307650.3322216
https://doi.org/10.1007/978-3-030-29959-0_14
https://doi.org/10.1007/978-3-030-29959-0_14
https://github.com/shioyadan/Konata
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1109/MICRO.2018.00081
https://doi.org/10.1109/TSE.2019.2953709
https://doi.org/10.1109/TSE.2019.2953709
https://doi.org/10.1145/3352460.3358306
https://doi.org/10.1145/3314221.3314647
https://doi.org/10.1145/3314221.3314647
https://doi.org/10.1109/MICRO.2018.00042
https://doi.org/10.1109/MICRO.2018.00042
https://doi.org/10.1109/ISCA45697.2020.00064
https://doi.org/10.1109/ISCA45697.2020.00064
https://doi.org/10.1145/3352460.3358274

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 This paper

	2 Background
	2.1 Speculative Execution Attacks and Defenses
	2.2 Model Checking
	2.3 Uninterpreted Function

	3 Security Goal and Threat Model
	4 Microarchitectural Modeling Discipline
	4.1 Two Toy Examples
	4.2 The Modeling Discipline
	4.3 Covering Complex Designs with Simple Models
	4.4 Modeling Defenses As Modular Add-ons

	5 Pensieve: Framework and Implementation
	5.1 Baseline uArch Model
	5.2 Model Checker
	5.3 Counterexample Inspection
	5.4 Understanding Pensieve's Attack Coverage

	6 Case Study: GhostMinion
	6.1 Modeling GhostMinion
	6.2 Counterexample Inspection
	6.3 Fixing The Vulnerability

	7 Performance Evaluation
	7.1 Experiment Setup
	7.2 Evaluation Results

	8 Limitations and Future Work
	9 Related Work
	10 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and expected results
	A.6 Methodology

	References

