
SecureLoop: Design Space Exploration of Secure DNN
Accelerators

Kyungmi Lee
Massachusetts Institute of Technology

Cambridge, Massachusetts, USA
kyungmi@mit.edu

Mengjia Yan
Massachusetts Institute of Technology

Cambridge, Massachusetts, USA
mengjiay@mit.edu

Joel S. Emer
Massachusetts Institute of Technology / NVIDIA

Cambridge, Massachusetts, USA
jsemer@mit.edu

Anantha P. Chandrakasan
Massachusetts Institute of Technology

Cambridge, Massachusetts, USA
anantha@mit.edu

ABSTRACT
Deep neural networks (DNNs) are gaining popularity in a wide
range of domains, ranging from speech and video recognition to
healthcare. With this increased adoption comes the pressing need
for securing DNN execution environments on CPUs, GPUs, and
ASICs.While there are active research efforts in supporting a trusted
execution environment (TEE) on CPUs, the exploration in support-
ing TEEs on accelerators is limited, with only a few solutions avail-
able [18, 19, 27]. A key limitation along this line of work is that
these secure DNN accelerators narrowly consider a few specific ar-
chitectures. The design choices and the associated cost for securing
these architectures do not transfer to other diverse architectures.

This paper strives to address this limitation by developing a de-
sign space exploration tool for supporting TEEs on diverse DNN
accelerators. We target secure DNN accelerators equipped with
cryptographic engines where the cryptographic operations are
closely coupled with the data movement in the accelerators. These
operations significantly complicate the scheduling for DNN accel-
erators, as the scheduling needs to account for the extra on-chip
computation and off-chip memory accesses introduced by these
cryptographic operations, and even needs to account for potential
interactions across DNN layers.

We tackle these challenges in our tool, called SecureLoop, by
introducing a scheduling search engine with the following attributes:
1) considers the cryptographic overhead associated with every off-
chip data access, 2) uses an efficient modular arithmetic technique
to compute the optimal authentication block assignment for each
individual layer, and 3) uses a simulated annealing algorithm to
perform cross-layer optimizations. Compared to the conventional
schedulers, our tool finds the schedule for secure DNN designs
with up to 33.2% speedup and 50.2% improvement of energy-delay-
product.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0329-4/23/10.
https://doi.org/10.1145/3613424.3614273

CCS CONCEPTS
• Computer systems organization→ Neural networks; Data
flow architectures; • Security and privacy→ Security in hard-
ware.

KEYWORDS
Trusted execution environment, neural networks, accelerator sched-
uling

ACM Reference Format:
Kyungmi Lee, Mengjia Yan, Joel S. Emer, and Anantha P. Chandrakasan.
2023. SecureLoop: Design Space Exploration of Secure DNN Accelerators.
In 56th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO ’23), October 28-November 1, 2023, Toronto, ON, Canada. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3613424.3614273

1 INTRODUCTION
Deep neural networks (DNNs) are increasingly deployed in security-
critical applications that process sensitive user information or make
high-stakes decisions. However, the security threats exploiting
hardware-level vulnerabilities can undermine the privacy and in-
tegrity necessary for such applications. For example, prior work has
shown that the confidentiality of the DNNmodels and training data
can be leaked via bus snooping attacks and cold boot attacks [11].
Moreover, the integrity of the DNNmodels can be tamperedwith via
data corruption attacks and RowHammer attacks [16, 17, 31, 44, 52],
leading to malfunctioning DNNs that generate either extremely
low accuracy or biased output on the assigned tasks.

An appealing solution to these security threats is to provide a
trusted execution environment (TEE) for DNN computation. There
have been extensive research efforts in supporting TEEs on CPUs,
including the commercialized solutions by major chip vendors and
various open-source solutions from academia, such as Intel SGX [7]
and Keystone [26]. These solutions often rely on cryptographic
operations (in software or hardware) to perform encryption and
authentication for off-chip data accesses [9, 10, 37, 39, 45, 51]. How-
ever, as those solutions target general-purpose applications, they
cannot match the high data-intensity nature of DNN applications,
let alone being used in DNN accelerators. As such, researchers
have been working on customizing TEE solutions for DNN accel-
erators [18, 19, 27]. These schemes leverage the structured and
predetermined data access patterns of DNN accelerators and derive
a coordination plan between data movement and cryptographic

https://doi.org/10.1145/3613424.3614273
https://doi.org/10.1145/3613424.3614273


MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Lee et al.

operations. As a result, the cryptographic operations and the data
movement in DNN accelerators become closely coupled.

However, there exists one key limitation of all existing works.
Recent years have witnessed innovations in DNN accelerators
with various designs and deployment setups, ranging from high-
performance data centers to low-power edge devices [5, 6, 13, 22, 30].
DNN accelerator architectures can vary significantly in terms of
dataflow, PE, and on-chip buffer organizations. Unfortunately, the
existing works on secure DNN accelerator designs only consid-
ered a few specific architectures [22] as their baseline designs, and
it is difficult to generalize the cost of securing those designs to
other diverse DNN accelerators with distinct performance goals
and area/energy budgets. This paper aims to address this limita-
tion and develop a design space exploration tool for secure DNN
accelerators. We identify several challenges in developing such a
tool, especially related to identifying the optimal scheduling of the
workload.
Challenges Secure DNN accelerators need to include on-chip
cryptographic engines that perform encryption and authentica-
tion operations. To ensure data integrity, a cryptographic hash is
introduced that is associated with each block of data (called an
authentication block) and is used to verify the integrity of the data
before performing any computation on it. For data confidentiality,
this process requires the decryption of data flowing from DRAM to
on-chip buffers and the encryption of data flowing in the opposite
direction. When fetching a unit of data from DRAM to on-chip
buffers, we need to fetch the whole authentication block containing
this unit of data with its corresponding hash. Upon writing the data
back to DRAM, a new hash needs to be computed based on the
whole block of data and written back together with the data. The
cryptographic operations described above introduce extra on-chip
computation and additional off-chip memory accesses.

When designing a design space exploration tool for secure DNN
accelerators, in addition to counting the performance overhead
of cryptographic operations, we need to tackle an important yet
unexplored research challenge. The challenge arises when the au-
thentication block is not fully aligned with the tiling of data (tiles are
the unit for data movement between memory levels in DNN accel-
erators). Such misalignment of the authentication block and the
tiles leads to fetching redundant data for the purpose of performing
cryptographic authentication rather than DNN computation.

This challenge is further exacerbated by cross-layer dependency
among the layers in a DNN. Specifically, the output feature map
of one layer is used as the input feature map to the next layer, and
hashes will be computed and associated with fixed authentication
blocks when the output feature map is generated. Since tile assign-
ment is done independently for consecutive layers in traditional
DNN scheduling, misalignment in tiling between one layer’s out-
put feature map and the next layer’s input feature map introduces
additional challenges for assigning authentication blocks. Further-
more, cross-layer dependency due to authentication blocks also
implies that the schedules of consecutive layers are intertwined,
exponentially increasing the search space for scheduling.
This Paper In this work, we present a framework for design
space exploration of secure DNN accelerators, for systematic inves-
tigation of the performance, area, and energy trade-off for support-
ing a TEE in different DNN accelerator designs. A fair comparison

among different designs requires a scheduling algorithm that can
elicit the best possible performance of an accelerator design for a
given DNN workload [4, 8, 15, 20, 32].

At the core of our framework is a scheduling search engine with
three steps. First, we start by augmenting a baseline DNN scheduler
with the capability to take the performance and energy overhead
of the cryptographic engines into account. Next, we formulate the
authentication block assignment problem into a mathematical prob-
lem that can be analytically solved with computationally-efficient
algorithm and figure out the optimal authentication block size for
each datatype and layer. Finally, we solve cross-layer optimization
of the overall scheduling using simulated annealing, a heuristic-
based search algorithm, to trade-off between search time and the
quality of results.

We implement SecureLoop framework upon an existing sched-
uling tool, Timeloop [32]. We show that, compared to the baseline
scheduler that targets traditional DNN accelerators without cryp-
tographic support, our cryptographic-engine-aware scheduler can
find better schedules for secure DNN designs with up to 33.2%
speedup and 50.2% improvement of energy-delay-product. We use
our tool to perform a thorough design space exploration across
multiple DNN workloads, and we derive the area versus perfor-
mance trade-offs for different secure accelerator designs, providing
insights on which designs can be the Pareto front of this trade-off
curve.

2 BACKGROUND
2.1 DNN Accelerator Design Space Exploration
DNNs [14, 25, 28, 36, 38, 41] are comprised of multiple layers. A
multi-dimensional convolutional (CONV) layer is widely used for
image and video processing applications. The computation of a
2-dimensional CONV layer (shown in Fig. 1a) involves taking a
3-dimensional 𝑃 ′ × 𝑄 ′ × 𝐶 tensor called the input feature map
(ifmap) and𝑀 3-dimensional tensors called weights with a size of
𝑅 × 𝑆 ×𝐶 , performing convolution operations to produce a tensor
called output feature map (ofmap) with the size of 𝑃 × 𝑄 × 𝑀 . 1
Fully-connected layers that compute matrix multiplication can also
be described in this form by setting 𝑃,𝑄, 𝑅 and 𝑆 to 1, and𝑀 and𝐶
to be the size of ofmap and ifmap vectors.

DNN accelerators are designed to exploit substantial data reuse
within this multi-dimensional convolution and matrix multiplica-
tion computation. Given an architecture specification such as the
number of processing elements (PEs) and on-chip buffer sizes, a
designer aims to optimize performance and energy efficiency of
an accelerator by figuring out the optimal schedule of the given
DNN workload. A schedule describes how the computations and
data movement are temporally and spatially mapped to hardware
resources, and can be succinctly formulated using a nested for-loop
called “loopnest” [32]. For example, in Fig. 1, we show an example
architecture specification (Fig. 1b) and a sample loopnest schedule
(Fig. 1c) corresponding to this architecture’s memory hierarchy. The
loopnest schedule in Fig. 1c describes the tiling strategy between
memory levels and the multiplication-and-accumulate compute
order. Note that a schedule is also referred to as a mapping in the
literature [20, 32].
1𝑃 = (𝑃 ′ − 𝑅 + 2 × padding)/stride + 1 and𝑄 is derived similarly.



SecureLoop: Design Space Exploration of Secure DNN Accelerators MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

(a) DNN workload specification. Convolu-
tions between weight and ifmap produce
ofmap.

(b) An example DNN accelerator
with the memory hierarchy.

(c) A sample loopnest (nested for-loops) with the
specification for tiling, loop order, and data bypass.

Figure 1: Design space exploration of DNN accelerators.

Figure 2: A cryptographic engine supporting AES-GCM, a
widely used authenticated encryption protocol.

Prior work acknowledges that the schedule search space for
DNN accelerators is large, and efficiently searching for the optimal
schedule presents a research challenge [4, 8, 15, 20, 32]. Several
methodologies have been proposed. For example, Timeloop [32]
used brute-force search over all possible loopnests, and supported
approximate methods like random pruning to reduce the search
time. CoSA [20], on the other hand, formulated the search problem
as a constrained-optimization problem that can be solved using
integer programming techniques. Furthermore, other classes of
schedulers proposed to use machine learning driven approaches,
such as [15].

The goal of this paper is to augment the design space exploration
tools with the capability to take data encryption and authentica-
tion into account and find the optimal schedules for secure DNN
accelerators.

2.2 Memory Encryption and Authentication
We consider both the confidentiality and integrity of data stored
in the off-chip DRAM. A trusted execution environment (TEE)
assumes that the on-chip structure are trusted and the off-chip
memory is insecure. To ensure the confidentiality and integrity of
data stored in the off-chip DRAM, cryptographic primitives, such
as authenticated encryption, are often used.

An authenticated encryption scheme takes a plaintext, a secret
key, and an encryption seed as inputs, and computes a ciphertext
and a hash. Fig. 2 depicts the interface of a cryptographic engine
that implements such a scheme with an explicit annotation on
where each type of data is located. The hash is stored off-chip and
is used to verify the integrity of the ciphertext. The encryption seed
is composed of a counter, the address of the data, and a randomly
generated initialization vector. The counter serves as a version
number for the data and is incremented every time the accelera-
tor generates a new version of the data. Since DNN accelerators

101

Area (kGates)

100

101

102

Av
g.

 C
yc

le
s p

er
 B

lo
ck

Banerjee-2019
Banerjee-2017-Parallel

Satoh-2001

Hamalainen-2006-Power

Hamalainen-2006-Area

Hamalainen-2006-Speed

Mathew-2011

Mathew-2015
Zhang-2016

Banerjee-2017-Pipeline

Figure 3: The tradeoff space for AES implementations.

use explicit data orchestration [34] and the accelerators have full
knowledge of the version number, recent works [18, 19, 27] pro-
pose to track the counter using on-chip structures or the host CPU.
Therefore, we assume the counters can be computed and accessing
them does not incur complicated off-chip accesses.

All datatypes in a DNN (i.e., weights, ifmaps, and ofmaps) are
in plaintext when they are stored and processed on-chip. When
ofmaps or intermediate partial sums are generated and need to be
written back to the DRAM, the cryptographic engine computes
the ciphertext and hash corresponding to the data. When the data
is fetched in the opposite direction, the accelerator retrieves the
ciphertext data along with its associated hash from the DRAM, and
feeds both into the cryptographic engine. The cryptographic engine
validates the integrity of the ciphertext data against its hash and
decrypts the data before supplying it to the on-chip components.
AES-GCM There are several standardized protocols for authen-
ticated encryption, and among them, AES-GCM (Galois Counter
Mode) has been widely used for its appealing characteristics in
performance [37, 51]. As shown in Fig. 2, an AES-GCM block is
primarily composed of an AES engine and a Galois-field multiplier.
The encryption seed is fed into the AES engine to generate a one-
time pad. Then, the one-time pad is XOR-ed with a plaintext to
obtain a ciphertext, and vice versa. A hash is computed from a
ciphertext using the Galois-field multiplication.

When performing design space explorations for secure DNN
accelerators, we need to account for the overhead introduced
by the cryptographic engine. There exists a variety of AES im-
plementations with diverse performance and area characteris-
tics. For example, Fig. 3 compares the AES hardware accelerator



MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Lee et al.

(a) (b) (c)

Figure 4: The same piece of data is used as ofmap of one layer
(a) and as ifmap of the next layer (b) and the two layers use
different tiling configurations. (c) shows that redundant reads
are introduced when using the data as ifmap but assigning
Authblock following ofmap’s tiling organization.

implementations published between 2001-2018 in circuits litera-
ture [2, 3, 12, 29, 42, 53]. It shows a clear trade-off between perfor-
mance and area, where performance is measured by the average
latency of encrypting/decrypting a 128-bit block (y-axis) and the
area is counted by the number of equivalent gates to fairly compare
among different technologies (x-axis). Our design space exploration
tool, SecureLoop, can help select the appropriate cryptographic en-
gine architecture to achieve an optimal performance/area trade-off.

3 MOTIVATION AND GOALS
We aim to develop a design space exploration tool for secure DNN
accelerators, equipped with a search algorithm that identifies the
optimal scheduling considering the unique properties of secure
DNN accelerators. In this section, we point out that a cryptographic
engine, which are often considered as a low-cost add-on to a pre-
defined DNN accelerator in prior work [18, 19, 27], can pose sig-
nificant overhead to different designs. Besides, we point out that
authentication block assignments introduce a significant amount
of complexity to our scheduling search space that our tool needs to
navigate.

3.1 Overhead Due to Cryptographic Engines
Existing work on designing secure DNN accelerators [18, 19, 27]
overlooks the fact that cryptographic engines can pose non-trivial
overhead to the performance, energy, and area of the accelerator de-
sign and significantly shift the optimal design choices. As shown in
Fig. 3, existing cryptographic engines do not achieve area-efficiency
while attaining high performance at the same time. To make the
point clearer, consider the DNN accelerators that target low-power
and resource-constrained embedded platforms and IoT devices,
such as Eyeriss [6] and other designs [13, 30]. To augment these
accelerators with cryptographic engines to support a TEE, for exam-
ple, we can use one AES-GCM engine that handles encryption and
authentication for each datatype (i.e., ifmap, ofmap, and weight)
as in [27]. When each AES-GCM engine is composed of a fully-
pipelined AES engine and a single-cycle Galois-field multiplier [2],
this configuration requires 416.7kGates in area, approximately 35%
of the logic gates in Eyeriss [6], incurring extensive area overhead.

We note that prior work [18, 19, 27] only considered solutions
for power-hungry accelerators, such as TPU [22], with large silicon
area (e.g., > 100mm2), and those design choices are not transferable

to low-power and energy-efficient accelerators. Furthermore, the
throughput of cryptographic engines has non-trivial impact on the
loopnest scheduling. As cryptographic operations, such as encryp-
tion/decryption and authentication, accompany off-chip accesses,
the supply of off-chip data to a DNN accelerator can be throttled by
cryptographic engines if they have insufficient throughput. So far,
we have shown that cryptographic engines complicate the design
space of secure DNN accelerators. Our tool, SecureLoop, strives to
perform a holistic assessment of the overhead due to cryptographic
engines.

3.2 Authentication Block Assignment
Authentication block assignment is a critical challenge for our
design space exploration tool, as it extensively complicates the
scheduling for secure DNN accelerators. Recall from Section 2.2,
to perform memory authentication, a hash is computed for each
block of off-chip data to verify its integrity. We call the unit of data
that a hash is associated with an authentication block, or AuthBlock
for short.

In prior work [18, 19], an authentication block is assigned using
a strategy we refer to as “tile-as-an-AuthBlock”. Specifically, in DNN
accelerators, data is grouped into tiles and off-chip access is per-
formed at the granularity of a tile. The size of the tile can be chosen
to optimize for data reuses. The “tile-as-an-AuthBlock” strategy
assigns authentication blocks to exactly match each datatype’s tile
organization.

3.2.1 Cross-layer dependency. “Tile-as-an-AuthBlock", as a simple
strategy, optimizes for minimizing the amount of hash reads for an
individual DNN layer. However, it can incur unforeseen overhead
due to cross-layer dependency. Cross-layer dependency arises from
the characteristic of a DNN that the output feature map (denoted
as ofmap) of one layer serves as the input feature map (denoted as
ifmap) of the next layer. Fig. 4 provides an example to illustrate
how such a dependency complicates the data traffic due to the
AuthBlocks.

Consider a piece of data, when served as ofmap, the tiling strat-
egy divides the data into 1×3 tiles. When served as ifmap, the tiling
strategy divides the data into 2 × 2 tiles. We are running into a situ-
ation where we need to find an AuthBlock assignment strategy for
the same piece of data that will be accessed by the accelerator with
distinct patterns. If we follow the “tile-as-an-AuthBlock” strategy
as in prior work, when assigning AuthBlock according to the ofmap
tiles, we end up with a significant amount of redundant accesses
when the data is served as ifmap. As shown in Fig. 4(c), when the
accelerator fetches the first ifmap tile for DNN computation, it is
forced to fetch the whole AuthBlock 1 and 2, doubling the off-chip
traffic.

One workaround to reduce the redundant data accesses is to al-
low two different AuthBlock assignments for the same piece of data,
which require a potentially high-cost “rehash” operation. Specifi-
cally, the AuthBlock assignment of the data was first optimized for
ofmap access patterns (e.g., using “tile-as-an-AuthBlock”). Before
the data is used as ifmap, the accelerator reads the data into the
accelerator, fully decrypts the data, and re-assigns hashes based on
a different AuthBlock organization that is optimized for ifmap ac-
cess patterns. Rehashing introduces extra delays and off-chip traffic,



SecureLoop: Design Space Exploration of Secure DNN Accelerators MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

(a) Directly computing CONV can result in “halos”
(overlaps) between tiles.

(b) Converting ifmapwith im2col generates a largerma-
trix that has duplicated data, and tiles do not overlap.

Figure 5: Compare ifmap tiles for two different accelerators,
one that directly supports CONV (a), and the other that com-
putes matrix multiplications after converting CONV using
im2col (b).

degrading the performance overall. Thus, to avoid rehashing, we
aim to find the unified AuthBlock assignment considering different
tiling strategies for one layer’s ofmap and the next layer’s ifmap.

3.2.2 Halos. Another problem that the “tile-as-an-AuthBlock”
strategy faces is for convolution accelerators that directly perform
CONV layers, instead of converting them to matrix multiplications
using im2col. Fig. 5 compares how tiles are organized for the two
different types of accelerators. Fig. 5(a) shows that, due to coarse-
grained tiling, the accelerators dedicated for convolutions can have
overlaps between tiles, especially in the ifmap datatype. We refer
to the overlapping region as a “halo” throughout this paper. How-
ever, in Fig. 5(b), in the matrix multiplication case, each element
exclusively belongs to one tile and there does not exists any overlap
between tiles.

The existence of halos makes “tile-as-an-AuthBlock” an unap-
pealing strategy. If we allow two AuthBlocks to share the overlap-
ping data, we are forced to duplicate the halo data by encrypting
and authenticating the data at least twice using different encryp-
tion seeds, which are composed of different counters, addresses,
and initialization vectors. As a result, both the off-chip traffic and
the memory footprint overhead are increased. Alternatively, not
duplicating the halo data can result in large redundant reads if some
AuthBlocks span across both the non-overlapping data and the halo
data in one tile. In SecureLoop, we aim to search for the AuthBlock
assignment to minimize the additional off-chip traffic caused by
halos.

3.2.3 Goal of AuthBlock Assignment. To summarize, AuthBlock
assignment poses a critical challenge in identifying the optimal
scheduling for secure DNN accelerators, primarily for two reasons.
First, the misalignment between AuthBlocks and data tiles, caused
by cross-layer dependency or halos, leads to redundant data fetches
for cryptographic authentication rather than DNN computation.
Second, cross-layer dependency due to the AuthBlock assignment

implies that the loopnest scheduling of two layers becomes funda-
mentally intertwined. There might be a loopnest schedule for one
layer that is not optimal on its own, but results in better overall
performance when it is considered together with its next layer.

Our design space exploration tool, SecureLoop, aims to search for
the optimal AuthBlock assignment strategy to reduce off-chip traffic
and maintain high performance. We consider the impacts of both
the size and the orientation of the AuthBlocks and examine how
they affect the additional off-chip traffic. In addition, we consider
cross-layer dependency directly from the loopnest scheduling level,
and search for schedules that optimize for global performance rather
than a single-layer performance. In Section 5.1, we demonstrate
that using an optimal AuthBlock assignment and performing the
cross-layer optimization can provide 3-33% faster schedules and
reduce the additional off-chip traffic from cryptographic operations
by 37-94% compared to the “tile-as-an-AuthBlock” strategy.

4 SECURE ACCELERATOR SCHEDULING
We present SecureLoop, a design space exploration tool that is
equipped with a scheduling search engine (Fig. 6) for secure DNN
accelerators.

First, we introduce a simple model to estimate the performance
and energy overhead of various cryptographic engines. The esti-
mated cost is used to properly configure the architecture parameters,
such as the off-chip bandwidth, of the existing loopnest scheduling
algorithms. This approach is general enough to be compatible with
a broad range of existing loopenst scheduling algorithms, such as
Timeloop [32] and CoSA [20].

Second, we design a methodology to search for optimal authenti-
cation block assignment that takes both the size and the orientation
of AuthBlocks into consideration. The key research challenge is
that counting the amount of extra off-chip traffic caused by in-
tegrity verification via detailed simulation has scalability issues
and cannot cope with a large search space. The approach that we
take to address this scalability issue is to formulate the counting
problem as a mathematical linear congruence problem and solve it
efficiently.

Finally, we design a cross-layer fine-tuning stage to optimize
both the scheduling and authentication block assignment strategy
for cross-layer dependencies. The research challenge here is that the
search space is amplified exponentially when we consider multiple
layers together, especially for DNN workloads with a large number
of layers, such as MobilenetV2 [41]. We use simulated annealing
by heuristically defining neighboring loopnest configurations, and
search for the final schedule.

4.1 A Model for Cryptographic Operations
We aim to identify the loopnest schedules for secure accelerators
by leveraging the existing DNN loopnest schedulers. Recall that
the difference between a secure DNN accelerator and a traditional
accelerator is the extra cryptographic operations performed by the
augmented cryptographic engine. The DNN loopnest schedulers
have to be modified to account for those cryptographic operations.
We adopt a simple and integrable solution that models the crypto-
graphic operations as an additional constraint upon the off-chip
DRAM bandwidth. Given that each piece of off-chip data access



MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Lee et al.

Figure 6: Overview of the scheduling search engine of SecureLoop.

(a) Cross-layer Dependency (b) tile-as-an-AuthBlock (c) horizontal, size: 1 (d) horizontal, size: 2 (e) vertical, size: 3 (f) vertical, size: 6

Figure 7: Examples of different AuthBlock assignments and their corresponding hash reads and redundant reads overhead. (a)
reassembles the cross-layer dependency example discussed in Section 3.2. (b)-(f) describes 5 different authentication block
assignment strategies. Each AuthBlock is marked with solid blue lines and the corresponding caption describes the AuthBlock
orientation and size.

needs to go through both the DRAM interface and the crypto-
graphic engine, the slower component among the two limits the
off-chip bandwidth. Thus, we derive the effective off-chip band-
width of a secure accelerator by taking the minimum of the memory
bandwidth and the cryptographic engine bandwidth. This effective
bandwidth replaces the original memory bandwidth for loopnest
scheduling purposes. Such an approach is highly compatible with
loopnest search tools whose internals may vary significantly. Be-
sides, this approach is in line with the assumption common among
existing search tools, that is, different hardware components on
the DNN accelerator are appropriately pipelined with negligible
pipelining overhead (e.g., using techniques such as double-buffering
or buffets [34]).

4.2 Mathematical Formulation for
Authentication Block Assignment

In the second step of our scheduler, we aim to determine an optimal
authentication block assignment strategy that can minimize the
additional off-chip traffic caused by data authentication, and thus
minimize the extra overall performance overhead. This step requires
performing an exhaustive search over all feasible AuthBlock sizes
and orientations for each layer and datatype (i.e., weight, ifmap,
and ofmap). Such a search poses a serious scalability issue, which
we address with a mathematical formulation of the problem.
The Search Space We start by describing what the search space
for authentication block assignment looks like.

Given the nature of the memory authentication operation, it
introduces additional off-chip memory accesses, classified into two
categories. First, extra accesses to fetch the hashes. Second, extra

accesses to fetch the data that is not needed for the actual DNN
computation, but is needed for integrity verification because it
lies within the same authentication block as the data used by the
accelerator. We distinguish the two types of overhead as hash reads
and redundant reads respectively.

There exists a non-trivial search space for authentication block
assignment, because both the size and orientation of the authentica-
tion block affect the off-chip traffic overhead. We provide examples
in Fig. 7 to illustrate the search space and highlight the trade-off
between hash reads and redundant reads with different AuthBlock
assignments. In each figure, we highlight the first ifmap tile in
orange, mark each authentication block with solid blue lines, and
we list the hash reads and redundant reads at the bottom of each
assignment.

In Fig. 7(a) and (b), the example reassembles the cross-layer de-
pendency case described in Section 3.2, where the AuthBlock is
assigned according to the ofmap tiling. Since there are two Auth-
Blocks in total, the hash reads overhead is low. However, large
redundant reads are incurred as all data belonging to AuthBlock 1
and 2 has to be fetched when accessing the first tile.

Fig. 7(c) and (d) compares two cases of using a horizontal Au-
thBlock with varied size. In (c), it is an extreme case where the
AuthBlock size is 1, meaning each element is assigned with a hash,
resulting in high hash reads overhead with zero redundant reads.
In (d), when we increase the AuthBlock size from 1 to 2, the hash
reads are reduced by half, but we start to have redundant reads
because some of the AuthBlocks span across the boundary of the
first tile. These two cases clearly demonstrate the impact of the size



SecureLoop: Design Space Exploration of Secure DNN Accelerators MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

(a) An example of a mismatch between the tile𝑖 and the tile𝑗 .

(b) Three conditions for an AuthBlock to lie in the intersection of
the tile𝑖 and the tile𝑗 from the above example.

Figure 8: Mathematical formulation of counting redundant
reads for a given AuthBlock assignment.

of AuthBlocks. When the AuthBlock size increases, the hash reads
decrease, but the redundant reads can increase.

To further complicate the space, the orientation of the AuthBlock
also matters. Fig. 7(e) shows vertical AuthBlocks with a size of
3. This strategy happens to be an ideal strategy, because every
AuthBlock resides exactly within the first ifmap tile, leading to no
redundant reads. Meanwhile, since the AuthBlock size is 3, it has
1/3 of the hash reads overhead compared to the horizontal size-1
strategy shown in Fig. 7(c). However, if we increase the size of the
vertical AuthBlock to 6 in Fig. 7(f), the amount of redundant reads
increases.

In summary, both the orientation and size of an AuthBlock affect
the off-chip traffic overhead. We perform an exhaustive search to
identify the optimal AuthBlock assignment, and the search has to
be efficient.
Mathematical Formulation We now describe our mathemat-
ical formulation of the authentication block search process. This
formulation will enable us to solve the problem analytically. Our
formulation can be applied to the two cases where redundant reads
occur: 1) cross-layer dependency, and 2) halos (Section 3.2).

In both cases, we are given a piece of data, its tile organizations
where several tiles overlap (e.g., overlaps between the ofmap tiles
and the ifmap tiles for cross-layer dependency, or overlaps between
tiles among the ifmap tiles for halos). We are asked to calculate
the number of redundant reads and hash reads for each AuthBlock
assignment. Since each time an AuthBlock is accessed, all the el-
ements in that AuthBlock need to be fetched together, we reduce
the problem of calculating redundant reads to counting the number
of AuthBlocks that overlap with each tile.

We convert the above problem into a linear congruence prob-
lem as follows using an example in Fig. 8. The example shows a
2D tensor with two overlapping tiles, called tile𝑖 and tile𝑗 . For il-
lustration purposes, assuming the two tiles have the same height,
ℎ, and different widths, denoted as 𝑤𝑖 and 𝑤 𝑗 . Let’s consider the
case when we assign horizontal AuthBlocks to fully cover tile𝑖 , so
that no redundant access is needed when accessing tile𝑖 (if tile𝑖
is the ofmap tile, this will be a natural scenario as hashes will be
computed as the ofmap is generated). These AuthBlocks may not

fully align with the boundary of tile𝑗 , and thus we need to handle
the case when the AuthBlocks crosses the boundary of tile𝑗 . The
AuthBlocks can overlap with tile𝑗 in three conditions, shown in
Fig. 8(b).

We denote an AuthBlock using the (𝑥,𝑦) coordinates of its left
and right edges. Specifically, an AuthBlock has its left edge labeled
as (𝐿𝑥 , 𝐿𝑦) and it right edge labeled as (𝑅𝑥 , 𝑅𝑦). Then the following
mathematical conditions can be used to precisely capture the three
conditions. The first two scenarios are straightforward, where either
the right side or the left side of the AuthBlock overlaps with tile𝑗 :

𝑤𝑖 −𝑤 𝑗 ≤ 𝑅𝑥 < 𝑤𝑖 (1)
𝑤𝑖 −𝑤 𝑗 ≤ 𝐿𝑥 < 𝑤𝑖 (2)

The third scenario describes an AuthBlock wraping around tile𝑗
with both of its left and right edges located in tile𝑖 (assuming the
tile size is lesser than𝑤𝑖 ).

𝐿𝑥 < 𝑤𝑖 −𝑤 𝑗 ∧ 𝑅𝑥 < 𝑤𝑖 −𝑤 𝑗 ∧ 𝑅𝑥 < 𝐿𝑥 (3)

With the above formulation, we set out to efficiently calculate the
number of AuthBlocks that can satisfy one out of the three formulas
above. Assuming an AuthBlock configuration with a height of 1 and
a varied width denoted as 𝑢, the 𝐿𝑥 , 𝑅𝑥 for the 𝑘-th AuthBlock is
derived as 𝐿𝑘𝑥 = (𝑢 ×𝑘) mod𝑤𝑖 and 𝑅𝑘𝑥 = (𝑢 ×𝑘 + (𝑢 − 1)) mod𝑤𝑖 ,
and can be plugged into the three formulas. Then, solving the
inequalities for 𝑢 and 𝑘 , and converting the inequalities into the
linear congruence equation by listing all possible values satisfying
the inequalities, we obtain the following linear congruence problem:

𝑢 × 𝑘 ≡ min(𝑤𝑖 −𝑤 𝑗 − 𝑢 + 1, 0), · · · ,𝑤𝑖 − 1 (mod𝑤𝑖 ) (4)

The formula above uses modular arithmetic, where 𝑎 ≡ 𝑏 (mod 𝑐)
means that the remainders of 𝑎 and 𝑏 divided by 𝑐 are equal. We
then end up counting howmany occurrences of 𝑘 (0 ≤ 𝑘 < ⌈ℎ×𝑤𝑖

𝑢 ⌉)
satisfy Eq. (4). This linear congruence problem can be efficiently
solved using the extended Euclidean algorithm that finds the great-
est common denominator. We can use this algorithm to find all 𝑘s
in a log-linear time.

The above example demonstrates horizontal AuthBlock assign-
ment and assumes 2D tiles with the same height. However, the
discussed methodology above is general enough to be applicable to
vertical AuthBlock assignments and for higher-dimensional tiles
with arbitrary overlapping patterns. To generalize the problem,
consider a 𝑛-dimensional tile. We search for AuthBlocks with 𝑛 − 1
of the dimensions set to 1 and the remaining dimension 𝑢 to be
varied. In essence, we are flattening an 𝑛-dimensional tensor to a
1-d vector and slicing it. Therefore, our computation complexity
increases linearly as the possible value of the width of AuthBlocks,
i.e., 𝑢, whose maximum value is capped by the number of elements
in a tile, regardless of the dimension size.
Example of Analysis Results In Fig. 9, we visualize the search
space of AuthBlock assignment. The example follows the setup in
Fig. 8 by setting ℎ = 30,𝑤𝑖 = 30, and𝑤 𝑗 = 20. We then sweep the
AuthBlock size 𝑢 from 1 to 30 for the horizontal orientation (note
that 𝑢 > 30 will result in the same redundant reads as the “tile-
as-an-AuthBlock”), and from 1 to 900 for the vertical orientation,
where the upper bound means using the full tile as an AuthBlock,
to see how these variations affect the overall off-chip traffic when
accessing the misaligned tile.



MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Lee et al.

0 5 10 15 20 25 30
Authentication Block Size (# elements)

0

10000

20000

30000

40000

Of
f-c

hi
p 

Tr
af

fic
 (b

its
)

Horizontal

redundant tag total

0 100 200 300 400
Authentication Block Size (# elements)

0

2000

4000

6000

8000
Vertical

Figure 9: The amount of off-chip traffic incurred for accessing
tile𝑗 in Fig. 8 when varying the AuthBlock orientation and
size.

In both figures, we observe an inversely proportional relationship
between the AuthBlock size and the amount of hash reads. When
we use horizontal AuthBlocks, we observe that the overall trend
between the redundant reads and the AuthBlock size is a positive
linear relationship, but there exist several distinguishable local
valleys. We observe the optimal assignment choice is to set 𝑢 =

10, which hits a local minimal value of the redundant reads, and
meanwhile incurs a moderate level of hash reads overhead. When
using vertical AuthBlocks, the trade-off space is rather irregular.
Since the two tiles in Fig. 8 have the same height, we periodically
observe zero redundant reads whenever the AuthBlock size is a
factor of ℎ × (𝑤𝑖 − 𝑤 𝑗 ) = 300. Using an exhaustive search, we
identify the optimal AuthBlock size is 300.

4.3 Efficient Cross-layer Fine Tuning
Cross-layer dependency interweaves the loopnest scheduling of
two consecutive layers. So far, we derived the loopnest schedules
with the best individual layer performance in the first step of our
scheduler, and identified the optimal AuthBlock assignment based
on those loopnest schedules. However, the obtained schedule may
not be the global optimum considering the dependency. To account
for cross-layer dependency from the loopnest scheduling level, we
introduce the third step in our scheduler that fine tunes the final
schedule.
Challenges Traditional schedulers for DNN accelerators usually
search for the optimal scheduling for each layer independently,
and they cannot be easily adapted to consider the influence of
cryptographic operations.

The search space for loopnest scheduling increases exponen-
tially with the number of layers we have to search jointly. For
brute-force search algorithms [4, 8, 32], computational complexity
imposed by cross-layer dependency can become prohibitive for
deep models [14, 41]. Other algorithms, such as optimization-based
techniques [20], is unlikely to be applicable due to the AuthBlock
assignment, as the mathematical formulation for the AuthBlock
assignment (Section 4.2) cannot be easily reduced to a closed-form.
Moreover, it cannot be guaranteed to result in convex or linear
constraints on objective functions. There is only limited work on
jointly searching the loopnest schedules for multiple layers, such
as in the context of fused-layer processing [43]. We consider those
efforts to be promising yet orthogonal to our work.
Search Using Simulated Annealing We propose to use simu-
lated annealing, a metaheuristic algorithm. Simulated annealing is

Algorithm 1 Pseudocode for step 3: simulated annealing

1: 𝐿1, ...𝐿𝑛 ← 𝐿◦1 , ..., 𝐿
◦
𝑛

2: cost← PerfModel(𝐿1, ..., 𝐿𝑛)
3: 𝑡 ← 𝑇init {initialize temperature}
4: for 𝑛 ← 1, ..., 𝑁 do
5: 𝑖 ← random(1, ..., 𝑛)
6: 𝐿′

𝑖
← GetNeighbor(L𝑖 )

7: cost′ ← PerfModel(𝐿1, ..., 𝐿′𝑖 , ..., 𝐿𝑛)
8: cost_diff = cost − cost′
9: if exp cost_diff

𝑡 > random.uniform(0, 1) then
10: 𝐿𝑖 ← 𝐿′

𝑖
{probabilistic accept the new schedule}

11: cost← cost′

12: end if
13: 𝑡 ← GetTemperature(𝑡, 𝑛,𝑇init,𝑇final)
14: end for

a probabilistic method for solving an optimization problem over a
large search space. It iteratively searches for the neighbors of the
current state and probabilistically decides whether to move on to
the new state. This probability is determined by the difference in
the costs of the current state and the new state, and a parameter
called temperature. The temperature is gradually decreased, such
that suboptimal yet diverse states can be explored in the earlier
iterations, while the best solutions can be exploited in the later
iterations.

Algorithm 1 describes our adaptation of simulated annealing
algorithm for cross-layer fine tuning. We denote 𝐿◦

𝑖
as the optimal

loopnest schedule of the 𝑖-th layer found from the first step without
considering cross-layer dependency. Our algorithm attempts to
identify a set of loopnest schedules (𝐿1, · · · , 𝐿𝑛) that results in
better performance compared to (𝐿◦1 , · · · , 𝐿

◦
𝑛) when 𝑛 layers are

considered altogether.
The algorithm starts by initializing the current set of loopnest

schedules as (𝐿◦1 , · · · , 𝐿
◦
𝑛) and calculates its cost using the perfor-

mance model and the optimal AuthBlock assignment (lines 1-2).
Then, for each iteration, the algorithm randomly selects one layer
𝑖 and a neighboring schedule 𝐿′

𝑖
(line 6) for that layer. Observe

that the key component of this algorithm is a heuristic involved in
proposing a neighbor (the GetNeighbor function). There is no natu-
ral metric for measuring the similarity between two loopnest sched-
ules. Our scheme uses the per-layer performance as the similarity
metric. Specifically, we obtain top-𝑘 best loopnest schedules per
layer from the first stage loopnest scheduler, and the GetNeighbor
function randomly samples among these 𝑘 different loopnest sched-
ules to get a neighbor. When searching among 𝑘 possible schedules
for each layer, the search space has 𝑘𝑛 distinct combinations to be
explored in a limited number of simulated annealing iterations. The
new schedule that replaces the loopnest schedule of the 𝑖-th layer
with 𝐿′

𝑖
is probabilistically accepted (lines 9-12), and the tempera-

ture is decreased linearly (line 13).
Impact of Search Parameters We examine how the search pa-
rameters affect the search result.We demonstrate the performance
improvement when the simulated annealing method is used with
different values of 𝑘 (the number of top schedules per layer to
form the neighbor set) in Fig. 10. The numbers are for an archi-
tecture derived from Eyeriss [6] with a cryptographic engine with



SecureLoop: Design Space Exploration of Secure DNN Accelerators MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

1 2 3 4 5 6 7 8 9 10
k

0

2

4

6

8

Sp
ee

du
p 

(%
)

1000 iterations
5000 iterations

Figure 10: Improvement in latency (speedup) when using
simulated annealing for different values of 𝑘 , compared to
when only the top-1 loopnest schedule for each layer.

an energy-efficient AES-GCM implementation from [2] (detailed
specifications in Table 2) running a MobilenetV2 [41] workload.

Increasing 𝑘 from 1 to 2 can improve the overall performance
about 5%. However, further increasing 𝑘 results in a slower perfor-
mance improvement, and the improvement stalls around the point
when 𝑘 = 6. Considering that a larger 𝑘 does not always result
in better speedup but can substantially increase the search space
size, we set 𝑘 = 6 for subsequent experiments. Also, the number of
iterations directly affects the search time, and we use 1000 iterations
as a default setup to trade-off the quality of results and the search
time.
Handling Post-processing Operations Our cross-layer fine
tuning needs to consider post-processing operations between con-
secutive layers, such as Batch Normalization [21], activation func-
tions, and pooling operations. There exist two cases.

First, some post-processing operations can be performed on-the-
fly while the ofmap is being generated, thus can be considered as
part of that layer. We consider Batch Normalization, ReLU activa-
tion, and adding zero pads around the feature map to fall into this
case, as they are simple operations. We handle such operations
using the cross-layer fine-tuning approach discussed above.

Meanwhile, some other post-processing operations cannot be
performed on-the-fly together with in-layer computation, such as
pooling operations and operations to combine several feature maps
for residual connections. The existence of these operations requires
a separate computation step, and inevitably triggers rehashing.
Thus, the cross-layer dependency problem for AuthBlock assign-
ment does not exist. As such, given a full DNN, we divide them into
multiple segments based on the existence of such post-processing
operations and apply fine tuning within each segment.

5 EVALUATION
We first present the effect of scheduling algorithms on the per-
formance of a secure accelerator in Section 5.1. Then, we show
the performance of diverse secure DNN accelerator designs, that
vary in the choice of cryptographic engines, the number of PEs,
and the size of the on-chip global buffer (Section 5.2). From these
experiments, we show the area-performance trade-off for secure
accelerators, and provide insights on the Pareto optimal design
points (Section 5.3).
Base Architecture Configuration We consider diverse DNN
accelerator designs in the following experiments derived from a
base configuration. As the base configuration, we use a spatial DNN
accelerator with multiple processing elements (PEs), where each
PE has an ALU and a small local memory, operating in parallel
and organized as a 2-dimensional array of shape 𝑋 × 𝑌 . The base

Table 1: Summary of different scheduling algorithms.

Scheduling
Algorithm

Loopnest
Scheduler AuthBlock Cross-layer

Fine Tune?
Crypt-Tile-Single Crypt-Aware Tile-as-an-AuthBlock N
Crypt-Opt-Single Crypt-Aware Optimal-AuthBlock N
Crypt-Opt-Cross Crypt-Aware Optimal-AuthBlock Fine Tune

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d 
La

te
nc

y

1.44 1.40 1.39

AlexNet

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2.37 2.28 2.25

ResNet18

0.0

2.5

5.0

7.5

10.0

12.5

15.0 14.77

10.35 9.86

MobilenetV2

Crypt-Tile-Single Crypt-Opt-Single Crypt-Opt-Cross

(a) Performance overhead using different scheduling algorithms,
measured by the number of cycles normalized to the unsecure base-
line accelerator.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ad
di

tio
na

l 
 O

ff-
ch

ip
 Tr

af
fic

 (b
its

)

1e7

0

2

4

6

8
1e7

0.0

0.5

1.0

1.5

2.0

1e8

Rehash Redundant Hash

(b) The additional off-chip traffic along with its breakdown into hash
reads, redundant reads, and rehashing traffic for different scheduling
algorithms.

Figure 11: Impacts of scheduling algorithms on performance
and off-chip traffic.

configuration has an on-chip SRAM buffer, and the data movement
can be described by its dataflow. We set the base configuration to
use the row-stationary dataflow from [6], 14 × 12 PEs, and 131kB
on-chip global buffer.

5.1 Effect of the Scheduling Algorithm
We examine the effect of different scheduling algorithms (Table 1)
on the performance of secure accelerators. As a baseline scheduling
algorithm, we consider Crypt-Tile-Single, which indicates that it
uses the Timeloop [32] with the effective bandwidth and energy
for the off-chip access reflecting the cryptographic operations, the
“tile-as-an-AuthBlock” assignment strategy, and does not consider
cross-layer dependency. We note that supplying the proper band-
width and energy parameters to Timeloop is crucial to prevent
suboptimal loopnest schedules degrading the baseline performance
especially when the cryptographic engine has low throughput. We
then add the second and third step one by one, with the most opti-
mized version denoted as Crypt-Opt-Cross with both the optimal
AuthBlock assignment and the cross-layer search enabled. The first
step of our scheduler is implemented upon Timeloop, but with an
extension to support top-𝑘 loopnests searching and modifications
to the effective energy and bandwidth for the off-chip accesses.
The second and third steps of our scheduler are implemented as
independent modules that accept the top-𝑘 loopnest schedules for
each layer as inputs, and return the final loopnest schedule and
optimal AuthBlock assignments.



MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Lee et al.

We evaluate our scheduling algorithms on the DNN accelerator
design with the base configuration we described before. The secure
accelerator uses an area-efficient parallel AES-GCM implementa-
tion [2, 3] as its cryptographic engine (one per each datatype). For
the off-chip DRAM access, we assume LPDDR4with the throughput
of 64B/cycle. Accelergy [49] is used to estimate energy and area
of each component on the DNN accelerator, assuming 40/45nm
technology it supports.

Fig. 11(a) shows the slowdown in secure accelerators, i.e., the
number of cycles to process a workload normalized to that of base-
line (unsecure) accelerators. Fig. 11(b) shows the additional off-chip
traffic incurred by cryptographic operations for each scheduling
algorithm. We examine three workloads with varying number of
layers and characteristics: AlexNet [25] , ResNet18 [14] , and Mo-
bilenetV2 [41] . These workloads are mainly convolutional, and
note that we only consider first 5 layers of AlexNet that are convo-
lutional.

First, our optimal AuthBlock assignment strategy reduces the
additional off-chip traffic across all three DNNworkloads compared
to the “tile-as-an-AuthBlock” assignment. The benefit comes from
two factors: 1) rehashing operations are not necessary between
dependent layers as the AuthBlocks are assigned by considering the
mismatches between their tiling strategies, and 2) both redundant
reads and hash reads are minimized without having to rehash or
duplicate some data. Also, this step reduces the slowdown by up
to 29.9% compared to Crypt-Tile-Single as well. These two factors
affect deeper workloads more significantly, and the benefit of the
AuthBlock assignment is most visible in MobilenetV2.

Second, cross-layer fine tuning of our scheduling primarily im-
proves the performance for a deep workload like MobilenetV2 with
additional 3.3% improvement on top of Crypt-Opt-Single. Simu-
lated annealing involves stochasticity when choosing a neighbor,
and the performance gain from this step can vary due to random-
ness. From 5 independent runs for simulated annealing, we observe
that the slowdown for MobilenetV2 with Crypt-Opt-Cross can vary
from 9.76 to 9.99 with the standard deviation of 0.08, and Fig. 11(a)
reports the mean value. This step does not significantly affect the
performance on a more shallower workload like AlexNet, where the
opportunity for cross-layer optimization is limited. Nevertheless, it
is worthy to note that this step reduces the additional off-chip traffic
due to redundant reads and hash reads (excluding rehashing-related
traffic) by 32.6% and 16.0% even for AlexNet and ResNet18. Overall,
our scheduler results in a schedule that is up to 33.2% faster and
50.2% better in EDP compared to Crypt-Tile-Single.
Roofline Model We can also use the roofline model [48] to in-
tuitively reason about the impact of scheduling algorithms (Fig. 12).
In the left of Fig. 12, the roofline model describes the performance
(y-axis) of each DNN workload, as a function of the computational
intensity (x-axis). The computational intensity is measured by the
number of operations (e.g., multiplication and addition) per byte of
DRAM traffic, and performance is measured by the number of op-
erations per second, assuming a 100MHz clock. There are two solid
lines illustrating the maximum possible performance: the horizon-
tal solid line is determined by the number of PEs that can operate
in parallel, and the slanted solid line represents the performance
limited by the off-chip memory bandwidth. The dotted slant line is

100 101 102

Computational Intensity (FLOP/byte)
100

101

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

AlexNet
ResNet18
MobilenetV2

100 101 102

Computational Intensity (FLOP/byte)
100

101

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

Crypt-Tile-Single Crypt-Opt-Single

Crypt-Opt-Cross

Unsecure (w/o crypt)

Figure 12: Left: Roofline model for accelerators using dif-
ferent scheduling algorithms. White markers represent the
unsecure baseline, and colored markers represent secure
accelerators. Right: Roofline model zoomed-in to show dif-
ferent scheduling algorithms for the MobilenetV2 workload.

based on the effective off-chip bandwidth of a secure DNN accel-
erator constrained by its cryptographic engine, assuming a single
parallel AES-GCM engine processes every off-chip data transfer (in
actual designs, each datatype has its own dedicated cryptographic
engine, and the performance can be higher than this effective line).
We can observe that the workloads were in the compute-bounded
region for the unsecure baseline accelerator, but throttling from the
cryptographic engine pushes the workloads to be in the effectively
memory-bounded region in secure accelerators. The right part of
Fig. 12 zooms in to show the different scheduling algorithms for
the MobilenetV2 workload, and shows that each step in our sched-
uler improves the performance by finding schedules with higher
computational intensity.

5.2 Impacts on Architecture Configurations
We evaluate the impact of using different architecture configura-
tions and cryptographic engines using SecureLoop.
Cryptographic Engine Configurations We evaluate the im-
pact of different cryptographic engine configurations, varying in
their AES-GCM engine architecture and counts, on the area over-
head and the performance. We use three different AES-GCM en-
gine implementations, summarized in Table 2. These designs have
distinct characteristics in the area-throughput trade-off, with the
fully-pipelined design supporting high throughput but large area
overhead, whereas the serial design has low area overhead and low
throughput. The parallel design is in between two other designs,
with medium throughput and area overhead. The area of AES-GCM
engines is normalized to 40nm technology using the equivalent
number of gates [2, 53].

We use the same accelerator architecture as in Section 5.1 and
use the Crypt-Opt-Cross scheduling algorithm. Fig. 13 compares
the slowdown over the unsecure baseline design for each workload
and the area overhead for each configuration. We find that similar
performance can be obtained by configurations with very different
area overhead. For example, the configuration with 30× serial AES-
GCM engines has similar performance to the one with 1× parallel
AES-GCM engine, although they have 10× difference in the area
overhead. Thus, the scalability of area-efficient yet low-throughput
AES-GCM engines can be problematic for DNN accelerators, and



SecureLoop: Design Space Exploration of Secure DNN Accelerators MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

Table 2: Specifications of AES and Galois-field multiplier
(GFMult) used to construct an AES-GCM engine.

Architecture AES GFMult

Cycle Area
(kGates)

Energy
(pJ) Cycle Area

(kGates)
Energy
(pJ)

Pipelined 1 78.8 165.1 1 60.1 57.7
Parallel 11 9.2 194.6 8 9.7 82.4
Serial 336 3.0 768 128 3.3 345.6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No
rm

al
ize

d 
La

te
nc

y

AlexNet

0.0

0.5

1.0

1.5

2.0

ResNet18

0

2

4

6

8

10
MobilenetV2

Parallel x 1
Parallel x 5

Pipelined x 1
Parllel x 10

Serial x 30
Pipelined x 2

10

20

30

40

50

60

10

20

30

40

50

60

10

20

30

40

50

60

Ar
ea

 o
ve

rh
ea

d 
(%

)

Figure 13: Slowdown over the unsecure baseline design and
the area overhead of secure accelerators varying in their
cryptographic engine configurations.

14x12 14x24 28x24
0

1

2

3

4

5

6

#C
yc

le
s

1e6 AlexNet

14x12 14x24 28x24
0.0

0.5

1.0

1.5

2.0

2.5

1e7 ResNet18

14x12 14x24 28x24
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
1e7 MobilenetV2

Unsecure Baseline Pipelined AES-GCM Parallel AES-GCM

Figure 14: Latency for secure accelerator designs varying in
their number of PEs.

often using a moderate number of higher-throughput AES-GCM
engines is a better design choice.
Scaling the Number of Processing Elements We examine
accelerator designs varying the number of PEs in the base con-
figuration. We consider two cryptographic engine configurations,
1× pipelined AES-GCM engine and 1× parallel AES-GCM engine.
Fig. 14 shows the evaluation result for different PE organizations
14 × 12, 14 × 24, and 28 × 24. The number of PEs determines the
maximum possible performance of the accelerator if the memory
bandwidth is sufficient, and this trend is well manifested for the
unsecure baseline accelerators (the latency decreases almost by half
as the number of PEs is doubled). However, since secure acceler-
ators can be effectively bounded by the supply of decrypted data,
the benefit of increasing the PE array size is not apparent for the
design with a parallel AES-GCM engine. Thus, the performance
of secure accelerators cannot be improved by more PEs unless the
cryptographic engine throughput is also increased.
Scaling the Size of On-chip Buffer The size of the on-chip
SRAM buffer limits the maximum tile size for the ifmap and ofmap
for the row-stationary dataflow architecture we used. In Fig. 15, we
examine the effect of different buffer sizes (131kB, 32kB, and 16kB)
on secure accelerators while other design paramters are fixed. As
we scale down the buffer size, the size of tiles between the off-chip
and the on-chip buffer decreases, often resulting in larger off-chip
traffic. For the unsecure baseline accelerators, larger off-chip traffic
is not problematic because they have sufficient off-chip memory
bandwidth. However, it can further throttle the secure accelerators

16kB 32kB 131kB
0

1

2

3

4

5

6

7

8

#C
yc

le
s

1e6 AlexNet

16kB 32kB 131kB
0.0

0.5

1.0

1.5

2.0

2.5

3.0

1e7 ResNet18

16kB 32kB 131kB
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

1e7 MobilenetV2

Unsecure Baseline Pipelined AES-GCM Parallel AES-GCM

Figure 15: Latency of designs varying in the size of on-chip
SRAM buffer.

2 3 4 5
Area (mm2)

2

4

6

8

#C
yc

le
s

1e6

PE 14x12
PE 14x24
PE 28x24

Pipelined
Parallel/Serial

GLB 131kB
GLB 32kB
GLB 16kB

Figure 16: The area vs. performance trade-off of secure ac-
celerator designs. Points highlighted with red edges indicate
the Pareto front of this trade-off curve.

with limited encryption/decryption bandwidth, thus leading to
longer latency for small buffer sizes.
DifferentDRAMTechnologies An off-chipDRAMwith higher
bandwidth does not necessarily improve the performance of se-
cure accelerators, as the effective off-chip bandwidth is limited by
the cryptographic engine. However, the energy for the off-chip
access is directly affected by the DRAM technology. To illustrate
these two points, we experiment with three different DRAM con-
figurations: LPDDR4 with 64B/cycle throughput, LPDDR4 with
128B/cycle throughput, and HBM2 with 64B/cycle throughput. For
the AlexNet workload, we observe that the DRAM bandwidth does
not affect the latency and energy of secure accelerators. HBM2 has
lower energy per access compared to LPDDR4, and the energy for
both the unsecured baseline and the secure accelerators decreases
compared to LPDDR4, while the latency is not affected.
Impact of TEE Entry/Exit Entering a TEE and exiting from
it can affect the performance when the full system is considered
end-to-end. Previous works that examined the end-to-end over-
head of supporting a TEE for accelerators [27] showed that the
initial transfer of DNN weights to the accelerator context is the
major source of latency for the entry. We note that this transfer
latency might not vary significantly across different accelerator
architecture, as the transfer is determined by the model parameter
size and the host CPU. Furthermore, when an accelerator is serv-
ing multiple inference requests using the same DNN, this initial
transfer cost of model parameters can be negligible compared to
the overall execution time. Thus, we expect that TEE entries/exits
do not significantly affect the optimal design of secure accelerators.



MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Lee et al.

5.3 Area vs. Performance Trade-off
Finally, we plot the area vs. latency (for the AlexNet workload) trade-
off curve for several designs we have discussed so far in Fig. 16.
We also derive the Pareto front of this trade-off curve, and observe
characteristics of the optimal and suboptimal points. First, the de-
signs with a small on-chip buffer size but with a high throughput
cryptographic engine (i.e., pipelined AES-GCM engines) are often
optimal. As we observed in Fig. 15, performance is not degraded
much if the cryptographic engine provides sufficient throughput
even if we scale down the buffer size. Thus, dedicating more area to
the cryptographic engine by reducing the on-chip buffer size can
provide a good trade-off.

Besides, the designs with larger PE array sizes (e.g., 14 × 24
or more) but with a low throughput cryptographic engine result
in suboptimal points. This observation agrees with Fig. 14 that
the benefit of having higher parallelism cannot be achieved when
cryptographic engines are the bottleneck.

6 RELATEDWORK
We now discuss related work on supporting TEEs on general-
purpose processors and DNN accelerators.We also cover alternative
approaches to secure DNN computation.
Supporting a TEE for CPUs and GPUs Many optimizations
have been proposed to reduce the overhead of supporting a TEE
in general-purpose processors, such as CPUs and GPUs. Several
works proposed techniques to reduce the overhead of traversing
a Merkle tree in CPUs [9, 37, 51]. Different counter formats were
proposed to allow a more compact Merkle tree [39, 45]. Recent
works extended a TEE for GPUs and accelerators with a trusted I/O
between a host CPU and these accelerators [1, 47].
Tree-less Verification for DNN Accelerators Recent works
showed that the counters do not have to be stored, and instead can
be calculated from the computation pattern of DNN accelerators
[18, 19, 27], removing the necessity of a Merkle tree. [18, 19] tracked
the counters by a MCU unit on the accelerator, and [27] proposed
an external host processor to supply the counters. [18, 19] further
proposed “tile-as-an-AuthBlock”, and we considered this strategy
as the baseline in our evaluation
Other Techniques for SecureMachine Learning [46] showed
that a DNN computation can be delegated to an untrusted accel-
erator from the secure host CPU using a verifiable outsourcing
algorithm. Homomorphic encryption that performs computations
over the encrypted domain provides privacy to both the user input
and the model, and several works proposed techniques to mitigate
its overhead [23, 24, 35, 40]. Recent work explored hardware ac-
celeration to support differential privacy as well [33]. Finally, [50]
presented a method for securing computations over off-chip near
data processing accelerators.

7 CONCLUSION
This work presents a framework for systematic design space explo-
ration of secure DNN accelerators supporting a TEE for privacy and
integrity. We present SecureLoop, that is equipped with a schedul-
ing search engine capable of 1) cryptographic engine aware loopnest
scheduling, enabled by a simple performance and energy modeling
of a cryptographic engine, 2) the optimal AuthBlock assignment

navigating a complex search space dependent on both the size and
orientation of AuthBlocks, and 3) cross-layer fine tuning using sim-
ulated annealing. Using our framework, we show the impact of
design parameters on the performance of secure accelerators, and
provide design insights for secure accelerators from the area vs.
performance trade-off.

ACKNOWLEDGMENTS
This work was funded in part by Samsung Electronics, Korea Foun-
dation for Advanced Studies, and NSF PPoSS. We thank the anony-
mous reviewers for all their valuable comments during the review
process.

REFERENCES
[1] 2022. Software Enabling for Intel® TDX in Support of TEE-I/O. Technical Report.

Intel Corporation.
[2] Utsav Banerjee. 2017. Energy-efficient protocols and hardware architectures for

transport layer security. Master’s thesis. Massachusetts Institute of Technology.
[3] Utsav Banerjee, Andrew Wright, Chiraag Juvekar, Madeleine Waller, Arvind,

and Anantha P. Chandrakasan. 2019. An Energy-Efficient Reconfigurable DTLS
Cryptographic Engine for Securing Internet-of-Things Applications. IEEE Journal
of Solid-State Circuits 54, 8 (2019), 2339–2352. https://doi.org/10.1109/JSSC.2019.
2915203

[4] Prasanth Chatarasi, Hyoukjun Kwon, Angshuman Parashar, Michael Pellauer,
Tushar Krishna, and Vivek Sarkar. 2021. Marvel: A Data-Centric Approach for
Mapping Deep Learning Operators on Spatial Accelerators. ACM Trans. Archit.
Code Optim. 19, 1, Article 6 (dec 2021), 26 pages. https://doi.org/10.1145/3485137

[5] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. 2014. DianNao: A Small-Footprint High-Throughput Accel-
erator for Ubiquitous Machine-Learning. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (Salt Lake City, Utah, USA) (ASPLOS ’14). Association for Computing Ma-
chinery, New York, NY, USA, 269–284. https://doi.org/10.1145/2541940.2541967

[6] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Architec-
ture for Energy-Efficient Dataflow for Convolutional Neural Networks. In 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA).
367–379. https://doi.org/10.1109/ISCA.2016.40

[7] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Cryptology ePrint
Archive (2016).

[8] Shail Dave, Youngbin Kim, Sasikanth Avancha, Kyoungwoo Lee, and Aviral
Shrivastava. 2019. DMazeRunner: Executing Perfectly Nested Loops on Dataflow
Accelerators. ACM Trans. Embed. Comput. Syst. 18, 5s, Article 70 (oct 2019),
27 pages. https://doi.org/10.1145/3358198

[9] B. Gassend, G.E. Suh, D. Clarke, M. van Dijk, and S. Devadas. 2003. Caches
and hash trees for efficient memory integrity verification. In The Ninth Inter-
national Symposium on High-Performance Computer Architecture, 2003. HPCA-9
2003. Proceedings. 295–306. https://doi.org/10.1109/HPCA.2003.1183547

[10] Shay Gueron. 2016. Memory Encryption for General-Purpose Processors. IEEE
Security and Privacy 14, 6 (nov 2016), 54–62. https://doi.org/10.1109/MSP.2016.
124

[11] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.
Felten. 2009. Lest We Remember: Cold-Boot Attacks on Encryption Keys. Com-
mun. ACM 52, 5 (may 2009), 91–98. https://doi.org/10.1145/1506409.1506429

[12] P. Hamalainen, T. Alho, M. Hannikainen, and T.D. Hamalainen. 2006. Design
and Implementation of Low-Area and Low-Power AES Encryption Hardware
Core. In 9th EUROMICRO Conference on Digital System Design (DSD’06). 577–583.
https://doi.org/10.1109/DSD.2006.40

[13] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,
and William J. Dally. 2016. EIE: Efficient Inference Engine on Compressed
Deep Neural Network. In Proceedings of the 43rd International Symposium on
Computer Architecture (Seoul, Republic of Korea) (ISCA ’16). IEEE Press, 243–254.
https://doi.org/10.1109/ISCA.2016.30

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (Jun 2016). https://doi.org/10.1109/cvpr.2016.90

[15] Kartik Hegde, Po-An Tsai, Sitao Huang, Vikas Chandra, Angshuman Parashar,
and Christopher W. Fletcher. 2021. Mind Mappings: Enabling Efficient Algorithm-
Accelerator Mapping Space Search (ASPLOS ’21). Association for Computing Ma-
chinery, New York, NY, USA, 943–958. https://doi.org/10.1145/3445814.3446762

[16] Sanghyun Hong, Pietro Frigo, Yiğitcan Kaya, Cristiano Giuffrida, and Tudor
Dumitraş. 2019. Terminal Brain Damage: Exposing the Graceless Degradation

https://doi.org/10.1109/JSSC.2019.2915203
https://doi.org/10.1109/JSSC.2019.2915203
https://doi.org/10.1145/3485137
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1145/3358198
https://doi.org/10.1109/HPCA.2003.1183547
https://doi.org/10.1109/MSP.2016.124
https://doi.org/10.1109/MSP.2016.124
https://doi.org/10.1145/1506409.1506429
https://doi.org/10.1109/DSD.2006.40
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1145/3445814.3446762


SecureLoop: Design Space Exploration of Secure DNN Accelerators MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

in Deep Neural Networks under Hardware Fault Attacks. In Proceedings of the
28th USENIX Conference on Security Symposium (Santa Clara, CA, USA) (SEC’19).
USENIX Association, USA, 497–514.

[17] Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei Zuo, Yu Ji, Xinfeng Xie,
Yufei Ding, Chang Liu, Timothy Sherwood, and Yuan Xie. 2020. DeepSniffer: A
DNN Model Extraction Framework Based on Learning Architectural Hints. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (Lausanne, Switzerland) (AS-
PLOS ’20). Association for Computing Machinery, New York, NY, USA, 385–399.
https://doi.org/10.1145/3373376.3378460

[18] WeizheHua,MuhammadUmar, Zhiru Zhang, andG. Edward Suh. 2022. GuardNN:
Secure Accelerator Architecture for Privacy-Preserving Deep Learning. In Pro-
ceedings of the 59th ACM/IEEE Design Automation Conference (San Francisco,
California) (DAC ’22). Association for Computing Machinery, New York, NY,
USA, 349–354. https://doi.org/10.1145/3489517.3530439

[19] Weizhe Hua, Muhammad Umar, Zhiru Zhang, and G. Edward Suh. 2022. MGX:
Near-Zero Overhead Memory Protection for Data-Intensive Accelerators. In
Proceedings of the 49th Annual International Symposium on Computer Architecture
(New York, New York) (ISCA ’22). Association for Computing Machinery, New
York, NY, USA, 726–741. https://doi.org/10.1145/3470496.3527418

[20] Q. Huang, M. Kang, G. Dinh, T. Norell, A. Kalaiah, J. Demmel, J. Wawrzynek, and
Y. Shao. 2021. CoSA: Scheduling by Constrained Optimization for Spatial Accel-
erators. In 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA). IEEE Computer Society, Los Alamitos, CA, USA, 554–566.
https://doi.org/10.1109/ISCA52012.2021.00050

[21] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. arXiv:1502.03167 [cs.LG]

[22] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis of a
Tensor Processing Unit. In Proceedings of the 44th Annual International Symposium
on Computer Architecture (Toronto, ON, Canada) (ISCA ’17). Association for
Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/
3079856.3080246

[23] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.
GAZELLE: A Low Latency Framework for Secure Neural Network Inference. In
27th USENIX Security Symposium (USENIX Security 18). USENIX Association, Bal-
timore, MD, 1651–1669. https://www.usenix.org/conference/usenixsecurity18/
presentation/juvekar

[24] Jongmin Kim, Gwangho Lee, Sangpyo Kim, Gina Sohn, Minsoo Rhu, John Kim,
and Jung Ho Ahn. 2022. ARK: Fully Homomorphic Encryption Accelerator
with Runtime Data Generation and Inter-Operation Key Reuse. In 2022 55th
IEEE/ACM International Symposium on Microarchitecture (MICRO). 1237–1254.
https://doi.org/10.1109/MICRO56248.2022.00086

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems, F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-
berger (Eds.), Vol. 25. Curran Associates, Inc. https://proceedings.neurips.cc/
paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[26] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn
Song. 2020. Keystone: An Open Framework for Architecting Trusted Execution
Environments. In Proceedings of the Fifteenth European Conference on Computer
Systems (Heraklion, Greece) (EuroSys ’20). Association for Computing Machinery,
NewYork, NY, USA, Article 38, 16 pages. https://doi.org/10.1145/3342195.3387532

[27] Sunho Lee, Jungwoo Kim, Seonjin Na, Jongse Park, and JaehyukHuh. 2022. TNPU:
Supporting Trusted Execution with Tree-less Integrity Protection for Neural
Processing Unit. In 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 229–243. https://doi.org/10.1109/HPCA53966.
2022.00025

[28] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C. Berg. 2016. SSD: Single Shot MultiBox Detector.
Lecture Notes in Computer Science (2016), 21–37. https://doi.org/10.1007/978-3-
319-46448-0_2

[29] Sanu K. Mathew, Farhana Sheikh, Michael Kounavis, Shay Gueron, Amit Agarwal,
Steven K. Hsu, Himanshu Kaul, Mark A. Anders, and RamK. Krishnamurthy. 2011.

53 Gbps Native GF(24 )2 Composite-Field AES-Encrypt/Decrypt Accelerator for
Content-Protection in 45 nm High-Performance Microprocessors. IEEE Journal
of Solid-State Circuits 46, 4 (2011), 767–776. https://doi.org/10.1109/JSSC.2011.
2108131

[30] Bert Moons and Marian Verhelst. 2017. An Energy-Efficient Precision-Scalable
ConvNet Processor in 40-nm CMOS. IEEE Journal of Solid-State Circuits 52, 4
(2017), 903–914. https://doi.org/10.1109/JSSC.2016.2636225

[31] Onur Mutlu and Jeremie S. Kim. 2020. RowHammer: A Retrospective. Trans.
Comp.-Aided Des. Integ. Cir. Sys. 39, 8 (Aug. 2020), 1555–1571. https://doi.org/10.
1109/TCAD.2019.2915318

[32] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,
Victor A. Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,
Stephen W. Keckler, and Joel Emer. 2019. Timeloop: A Systematic Approach to
DNN Accelerator Evaluation. In 2019 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS). 304–315. https://doi.org/10.
1109/ISPASS.2019.00042

[33] Beomsik Park, Ranggi Hwang, Dongho Yoon, Yoonhyuk Choi, and Minsoo Rhu.
2022. DiVa: An Accelerator for Differentially Private Machine Learning. In 2022
55th IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE,
1200–1217.

[34] Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal Crago, Kartik Hegde,
Rangharajan Venkatesan, Stephen W. Keckler, Christopher W. Fletcher, and Joel
Emer. 2019. Buffets: An Efficient and Composable Storage Idiom for Explicit
Decoupled Data Orchestration. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems (Providence, RI, USA) (ASPLOS ’19). Association for Computing Machin-
ery, New York, NY, USA, 137–151. https://doi.org/10.1145/3297858.3304025

[35] Brandon Reagen, Woo-Seok Choi, Yeongil Ko, Vincent T. Lee, Hsien-Hsin S.
Lee, Gu-Yeon Wei, and David Brooks. 2021. Cheetah: Optimizing and Accel-
erating Homomorphic Encryption for Private Inference. In 2021 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA). 26–39.
https://doi.org/10.1109/HPCA51647.2021.00013

[36] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You Only
Look Once: Unified, Real-Time Object Detection. arXiv:1506.02640 [cs.CV]

[37] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Solihin. 2007. Using
Address Independent Seed Encryption and Bonsai Merkle Trees to Make Secure
Processors OS- and Performance-Friendly. In 40th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 2007). 183–196. https://doi.org/10.1109/
MICRO.2007.16

[38] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-Resolution Image Synthesis with Latent Diffusion Models.
arXiv:2112.10752 [cs.CV]

[39] Gururaj Saileshwar, Prashant J. Nair, Prakash Ramrakhyani, Wendy Elsasser,
Jose A. Joao, and Moinuddin K. Qureshi. 2018. Morphable Counters: Enabling
Compact Integrity Trees For Low-Overhead SecureMemories. In 2018 51st Annual
IEEE/ACM International Symposium onMicroarchitecture (MICRO). 416–427. https:
//doi.org/10.1109/MICRO.2018.00041

[40] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald
Dreslinski, Christopher Peikert, and Daniel Sanchez. 2021. F1: A fast and pro-
grammable accelerator for fully homomorphic encryption. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture. 238–252.

[41] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2019. MobileNetV2: Inverted Residuals and Linear Bottlenecks.
arXiv:1801.04381 [cs.CV]

[42] Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh. 2001. A Com-
pact Rijndael Hardware Architecture with S-Box Optimization. In Advances in
Cryptology — ASIACRYPT 2001, Colin Boyd (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 239–254.

[43] Arne Symons, Linyan Mei, Steven Colleman, Pouya Houshmand, Sebastian
Karl, and Marian Verhelst. 2022. Towards Heterogeneous Multi-core Accelera-
tors Exploiting Fine-grained Scheduling of Layer-Fused Deep Neural Networks.
arXiv:2212.10612 [cs.AR]

[44] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal
War in Memory. In 2013 IEEE Symposium on Security and Privacy. 48–62. https:
//doi.org/10.1109/SP.2013.13

[45] Meysam Taassori, Ali Shafiee, and Rajeev Balasubramonian. 2018. VAULT: Reduc-
ing Paging Overheads in SGX with Efficient Integrity Verification Structures. In
Proceedings of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems (Williamsburg, VA, USA) (AS-
PLOS ’18). Association for Computing Machinery, New York, NY, USA, 665–678.
https://doi.org/10.1145/3173162.3177155

[46] Florian Tramer and Dan Boneh. 2019. Slalom: Fast, Verifiable and Private Exe-
cution of Neural Networks in Trusted Hardware. In International Conference on
Learning Representations. https://openreview.net/forum?id=rJVorjCcKQ

[47] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. 2018. Graviton: Trusted
Execution Environments on GPUs. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). USENIX Association, Carlsbad,
CA, 681–696. https://www.usenix.org/conference/osdi18/presentation/volos

https://doi.org/10.1145/3373376.3378460
https://doi.org/10.1145/3489517.3530439
https://doi.org/10.1145/3470496.3527418
https://doi.org/10.1109/ISCA52012.2021.00050
https://arxiv.org/abs/1502.03167
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://doi.org/10.1109/MICRO56248.2022.00086
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1109/HPCA53966.2022.00025
https://doi.org/10.1109/HPCA53966.2022.00025
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/JSSC.2011.2108131
https://doi.org/10.1109/JSSC.2011.2108131
https://doi.org/10.1109/JSSC.2016.2636225
https://doi.org/10.1109/TCAD.2019.2915318
https://doi.org/10.1109/TCAD.2019.2915318
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1145/3297858.3304025
https://doi.org/10.1109/HPCA51647.2021.00013
https://arxiv.org/abs/1506.02640
https://doi.org/10.1109/MICRO.2007.16
https://doi.org/10.1109/MICRO.2007.16
https://arxiv.org/abs/2112.10752
https://doi.org/10.1109/MICRO.2018.00041
https://doi.org/10.1109/MICRO.2018.00041
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/2212.10612
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1145/3173162.3177155
https://openreview.net/forum?id=rJVorjCcKQ
https://www.usenix.org/conference/osdi18/presentation/volos


MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Lee et al.

[48] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An
Insightful Visual Performance Model for Multicore Architectures. Commun. ACM
52 (04 2009), 65–76. https://doi.org/10.1145/1498765.1498785

[49] Yannan Nellie Wu, Joel S. Emer, and Vivienne Sze. 2019. Accelergy: An
Architecture-Level Energy Estimation Methodology for Accelerator Designs.
In 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
1–8. https://doi.org/10.1109/ICCAD45719.2019.8942149

[50] Wenjie Xiong, Liu Ke, Dimitrije Jankov, Michael Kounavis, Xiaochen Wang, Eric
Northup, Jie Amy Yang, Bilge Acun, Carole-Jean Wu, Ping Tak Peter Tang, G.
Edward Suh, Xuan Zhang, and Hsien-Hsin S. Lee. 2022. SecNDP: Secure Near-
Data Processing with Untrusted Memory. In 2022 IEEE International Symposium
on High-Performance Computer Architecture (HPCA). 244–258. https://doi.org/10.
1109/HPCA53966.2022.00026

[51] Chenyu Yan, D. Englender, M. Prvulovic, B. Rogers, and Yan Solihin. 2006. Improv-
ing Cost, Performance, and Security of Memory Encryption and Authentication.
In 33rd International Symposium on Computer Architecture (ISCA’06). 179–190.
https://doi.org/10.1109/ISCA.2006.22

[52] Fan Yao, Adnan Siraj Rakin, and Deliang Fan. 2020. DeepHammer: Depleting the
Intelligence of Deep Neural Networks through Targeted Chain of Bit Flips. In 29th
USENIX Security Symposium (USENIX Security 20). USENIX Association, 1463–
1480. https://www.usenix.org/conference/usenixsecurity20/presentation/yao

[53] Yiqun Zhang, Kaiyuan Yang, Mehdi Saligane, David Blaauw, and Dennis Sylvester.
2016. A compact 446 Gbps/W AES accelerator for mobile SoC and IoT in 40nm.
In 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits). 1–2. https://doi.org/10.
1109/VLSIC.2016.7573553

A ARTIFACT APPENDIX
A.1 Abstract
Our artifact provides the source code of SecureLoop, the
template/example architecture and workload descriptions, and
other utility functions. We provide the top-level testbench as
a Jupyter notebook (workspace/run_all.ipynb) and a script
(workspace/scripts/fig11.sh) that runs all three steps of our
scheduling algorithm to generate the stats (latency, energy, off-
chip traffic) for secure DNN accelerators. Running the notebook
reproduces the results in Figure 11 of this paper. We use a docker
environment to manage all dependencies necessary to run our arti-
fact. Our artifact requires a x86-64 machine and 15GB of disk space
for docker support.

A.2 Artifact check-list (meta-information)
• Algorithm: Scheduling of secure DNN accelerators with crypto-
graphic engines
• Program: Python3
• Run-time environment: Dockerfile
• Hardware: x86-64 machine
• Output: Plots and stats (csv) generated from the Jupyter notebook
• Experiments: Comparison of different scheduling algorithms (la-
tency, additional off-chip traffic due to cryptographic operations)
for various DNN workloads
• How much disk space required (approximately)?: 15GB
• How much time is needed to prepare workflow (approxi-
mately)?: 30 minutes if pulling docker image using the provided
docker-compose.yaml.template file. 2 hours if building docker
images from the sources.
• How much time is needed to complete experiments (approxi-
mately)?: 3 hours for running all three DNN workloads (AlexNet,
ResNet18, MobilenetV2) on a default DNN accelerator architecture
setup
• Publicly available?: Yes, available at https://github.com/kyungmi-
lee/SecureLoop-MICRO2023Artifact
• Code licenses (if publicly available)?: MIT
• Archived (provide DOI)?: 10.5281/zenodo.8329657

A.3 Description
A.3.1 How to access. The artifact including the source code for
SecureLoop, the Jupyter notebooks, and the scripts that run experi-
ments is available at https://github.com/kyungmi-lee/SecureLoop-
MICRO2023Artifact.

A.4 Installation
We provide a docker image that provides the necessary in-
frastructure. The installation process involves installing a
docker app, then pulling a docker image using the provided
docker-compose.yaml.template file. We also provide an option
to build docker images using the sources instead of pulling the pre-
built image. Please check README.md with the artifact repository
for installation and setup.

A.5 Experiment workflow
The experiment workflow is outlined in the Jupyter notebook
workspace/run_all.ipynb. First, the DNN accelerator / crypto-
graphic engine architecture and a DNN workload are defined. Then,
the notebook goes through all three steps in our scheduling algo-
rithm (loopnest scheduling, authentication block assignment, and
simulated annealing for joint-layer search). Finally, it generates
plots in Figure 11 comparing different scheduling algorithms.

Alternatively, a user can run a script
workspace/scripts/fig11.sh in a terminal, and the neces-
sary scheduling and evaluation codes are executed for three
workloads in Figure 11. The plots can be generated by a shorter
Jupyter notebook workspace/plot_figures.ipynb once the
script is finished.

A.6 Evaluation and expected results
For each DNN workload, the notebook generates two plots to com-
pare different scheduling algorithms: 1) performance overhead in
the nomalized latency (Figure 11(a)), and 2) additional off-chip traf-
fic due to cryptographic operations (Figure 11(b)). Different DNN
workloads can be chosen by commenting in/out workload defi-
nitions in the notebook. The generated plots for each workload
should match those in Figure 11. However, note that the scheduling
algorithm involves random processes (e.g., simulated annealing
randomly chooses which layer and loopnest schedule to use at
each iteration), and the result might not exactly match the num-
bers in Figure 11. Nevertheless, the result should be close (e.g., for
MobilenetV2, performance overhead for Crypt-Opt-Cross can vary
between 9.70 to 9.99, while the number in Figure 11 is 9.86; for
AlexNet and ResNet18, the results only deviate by < 0.01), and the
general trend between different scheduling algorithms should be
the same.

A.7 Experiment customization
The DNN accelerator / cryptographic engine architecture
in the notebook can be modified to run design space
exploration experiments. Running the scheduling algo-
rithm as detailed in the notebook also generates raw data
and a csv file summarizing the stats inside the folder
workspace/designs/{design_name}/{design_version}.
We provide a python script to generate architecture configurations

https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/HPCA53966.2022.00026
https://doi.org/10.1109/HPCA53966.2022.00026
https://doi.org/10.1109/ISCA.2006.22
https://www.usenix.org/conference/usenixsecurity20/presentation/yao
https://doi.org/10.1109/VLSIC.2016.7573553
https://doi.org/10.1109/VLSIC.2016.7573553
https://github.com/kyungmi-lee/SecureLoop-MICRO2023Artifact
https://github.com/kyungmi-lee/SecureLoop-MICRO2023Artifact


SecureLoop: Design Space Exploration of Secure DNN Accelerators MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

(workspace/generate_arch.py). Also, an additional script
workspace/scripts/fig14.sh illustrates how to configure the
python scripts to evaluate architectures with different PE array
shapes (Figure 14).

A.8 Methodology
Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-review-
and-badging-current
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

	Abstract
	1 Introduction
	2 Background
	2.1 DNN Accelerator Design Space Exploration
	2.2 Memory Encryption and Authentication

	3 Motivation and Goals
	3.1 Overhead Due to Cryptographic Engines
	3.2 Authentication Block Assignment

	4 Secure Accelerator Scheduling
	4.1 A Model for Cryptographic Operations
	4.2 Mathematical Formulation for Authentication Block Assignment
	4.3 Efficient Cross-layer Fine Tuning

	5 Evaluation
	5.1 Effect of the Scheduling Algorithm
	5.2 Impacts on Architecture Configurations
	5.3 Area vs. Performance Trade-off

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Methodology


