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Abstract. Fully automatic localization of anatomical structures in 2D
and 3D radiological data sets is important in both computer aided di-
agnosis, and the rapid automatic processing of large amounts of data.
We present a simple, accurate and fast approach with low computa-
tional complexity to find anatomical landmarks, based on a multi-scale
regression codebook of informative image patches and encoded landmark
contexts.
From a set of annotated training volumes the method captures the ap-
pearance of landmarks over several scales together with relative posi-
tions of neighboring landmarks and a spatial distribution model. During
multi-scale search in a target volume, starting from the coarsest level,
each landmark model predicts all landmark positions it has encoded,
with the median of all predictions yielding the final prediction for each
scale.
We present results on two challenging data sets (hand radiographs and
hand CTs), where our method achieves comparable accuracy to the state
of the art with substantially improved run-time.

Keywords: Anatomical structure localization, nearest neighbor regres-
sion, image patch codebooks

1 Introduction

The accurate localization of anatomical landmarks in medical imaging data is
a challenging problem, due to rich variability and frequent ambiguity of their
appearance. Among the reasons for the difficulties are noise (including local
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Fig. 1. Examples from the two data sets employed in this paper. a) Hand radiographs
and b) high resolution hand CTs. The objective of the proposed method is to localize
the depicted anatomical landmarks in an unseen target image or volume.

and global intensity changes), cluttered image data (overlapping structures in
2D projections, highly structured background in 3D organ segmentation), and
anatomical structures that exhibit a high degree of similarity (e.g., fingers or
vertebrae). We propose an algorithm that copes with these challenges and offers
a general approach to accurately localize landmarks without initialization or
subsequent refinement. The method constructs a multi-level regression codebook
which associates image patches with the corresponding positions of anatomical
landmarks depicted in the patch. During search the scale-pyramid is traversed,
finding the most similar patch for each landmark using k-nearest neighbor search.

The localization of anatomical structures is crucial for several areas of med-
ical imaging analysis: Segmentation approaches such as Level-Sets [4] and Ap-
pearance Models [3], typically require at least a coarse initial localization, while
registration approaches can exploit spatial initialization to avoid local minima.
The automatic localization of anatomical structures is fundamental for the field
of Computer Aided Diagnosis [7] and for structuring image information in image
retrieval, since it allows the algorithms to focus on target regions in the data and
subsequently invoke more specialized analysis stages. Landmark localization can
also be regarded as a form of semantic parsing [12] when point-wise rather than
regional information is required.

State of the art Several approaches to anatomical structure localization exist in
recent literature. They mainly differ in the type of semantic representation that
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is obtained to describe the image data. We thus distinguish between approaches
that either 1) indicate the positions of individual landmarks, 2) provide bounding
boxes for entire organs, 3) result in model parameters which describe the position
and shape of the object or 4) provide voxel-wise labels for different organs.

Localizing anatomical landmarks using the positions of selected interest points
has been the objective of [8, 1]. The methods learn interest point detectors on
training data, estimate positions of landmark candidates in the target volume
and finally disambiguate these candidates through a model matching step. Both
methods rely on the classification of the entire volume. [?] reduces this compu-
tational burden by performing a low-resolution step and a refinement step using
Hough regressors. Reducing the complexity by working on axial slices, [12] parse
whole body CT data in a hierarchical fashion, but are concerned with finding
larger organs. While substantially speeding up the localization this only works
for objects which are rather large in respect to the overall volume size, since the
objects have to be visible in at least one of the three central orthogonal slices.
Using Random Forests for the localization of organs in thorax CTs through
bounding boxes has been been proposed in [5]. An extension using Hough ferns
was presented in [11] to predict the bounding boxes of multiple organs at once
in full-body MR data. Relying on stochastic optimization instead of ensemble
classification or regression, Marginal Space Learning [14] tries to find the pa-
rameters of a bounding box or a parametric and data-driven shape model [2] to
localize and segment anatomical structures. This allows for fast localization, but
instead of representing a global search algorithm, iterative approaches have to
be used to cope with repetitive structures [9]. The task of assigning voxel-wise
labels to segment entire organs or organ structures has been approached by [6]
and [10] using Random Forest classification.

Contribution We present a simple, fast method for the global, accurate local-
ization of anatomical structures in 2D/3D data based on an appearance code-
book, and location predictors that capture sub-configurations of a landmark set.
It demonstrates that a top-down nearest neighbor matching strategy of image
patches drastically reduces the number of required feature computations and
yields localization results comparable to the state of the art.

Paper structure The paper is structured as follows: Sec. 2.1 details the con-
struction of the codebook, with the localization on a target volume described in
Sec. 2.2. Sec. 3 introduces the experiments, with the results presented in Sec. 3.3.
A discussion and an outlook can be found in Sec. 3.4 and Sec. 4.

2 Methods

The approach is divided into a training phase and a localization phase as shown
in Fig. 2 and Fig. 3. During localization a multi-scale codebook of image patches
and landmark positions is constructed, which is traversed during the localization
phase to obtain increasingly accurate landmark estimates at each scale.
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Fig. 2. Construction of the regression codebooks during training. For each landmark
and scale patches at various offsets and the corresponding relative landmark positions
are recorded, using all training images/volumes.

2.1 Training – Constructing the landmark regression codebook

The training phase requires a set of N training images or volumes Ii with cor-
responding annotations. The annotations represent the coordinates xi

x of the
x ∈ {1, . . . , L} landmarks of the anatomical structure in question. Each land-
mark is present in each of the training volumes.

Codebook construction to connect local appearance and landmark information
Our aim is to build multi-scale regression codebooks C of image patches and
corresponding relative landmark positions – one codebook per scale s ∈ 1, . . . , S
and landmark x. The patches stored in the codebook are extracted around the
landmarks with varying offsets and scaling, capturing the typical visual appear-
ance around each landmark. For each patch the positions of all landmarks visible
in the patch are recorded, relative to the patch’s center. Each of the PN entries
in the codebook Cs,x consists of the tuple 〈Pp,Lp〉 of the patch Pp and the corre-
sponding relative D×L landmark coordinates Lp which are visible in the patch.
Lp specifies the coordinates of the landmarks x ∈ 1 . . . L relative to the center
of the given patch1. Landmarks which are outside of the patch are denoted as
not visible.

The construction of the codebook proceeds as follows: At the top-most scale
s = 1 each image or volume is represented by an an-isotropically downscaled
miniature of size m×m×m (similarly m×m for images). At each scale s the
volume is considered to possess an edge length of

√
2(s− 1)m. This re-sampling

1 The necessary transformations between image coordinates and patch coordinates are
omitted for clarity throughout the text.
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of the entire image is never actually computed, it simply forms the reference
frame for each scale of the codebook generation.

At each scale s, patches P are extracted from the image or volume data
using linear interpolation for each landmark x from all training volumes N . The
patches are of size m×m×m, i. e. at scale s = 1 they correspond to the entire
image, and for scales s > 1 the patches zoom in on the landmark, as illustrated
in Fig. 2. Parts of patches which would be sampled from outside of the volume
are set equal to the closest voxel on the volume’s border. The gray values of each
patch is normalized to zero mean and unit variance.

To explore the image information in the vicinity of a landmark the entries
in the codebook Cs,x at a certain scale s and landmark x, are constructed by
extracting several patches around the landmark with, empirically chosen, 7 off-
sets in the range of [−6, 6] voxels for each dimension, along with scaling fac-
tors of {0.9, 1, 1.1}, resulting in P = 1029 patches for one landmark in one
training volume at one scale (P = 147 for images). To considerably reduce the
memory requirements and computational complexity for the codebook lookup,
dimensionality reduction of each codebook is performed using PCA, retaining
90% of variance, resulting in PCA coefficients PPCA and final codebook tuples
〈Pp

PCA,L
p〉. This training scheme results in the S×L regression codebooks Cs,x.

Shape model to regularize the localization To be able to regularize the interme-
diate solutions during the prediction phase, a model of the spatial distribution
of the landmarks s = 〈xi

1, . . . ,x
i
L〉 in the training data is learned. We compute

a point distribution model S = 〈s̄,S〉 using an eigen-decomposition of the co-
variance matrix of the training landmarks xx as proposed in [2], retaining all
eigenvectors and thus the entire shape variance observable in the training set,
where the shapes s in the model can be constructed through a parameter vector
b such that:

s = s̄ + Sb

2.2 Localization – Regularized top-down matching

Similar to the training phase the localization is performed in a multi-scale fash-
ion, shown in Fig. 3. The D×L landmark localization matrix L∗

s=1 is initialized
with all landmarks starting at the center of the test volume Itarget. Starting with
scale s = 1, a patch Px for each landmark x is extracted (without additional
offsets or scaling variations). The patch is normalized and projected onto the
patch PCA model of Cs,x, resulting in Px

PCA. The most similar patch px∗ in
the codebook is found using euclidean nearest neighbor search – leading to the
tuple 〈Px∗

PCA,L
x∗
p 〉 and thus the landmark coordinate predictions Lx∗

p as esti-
mated by landmark x. Repeating this codebook lookup for all landmarks yields
the D × L× L prediction tensor Md,i,j with position estimates from each land-
mark i to all landmarks that are visible in the same patch. The median over all
predictions j which are not marked as not-visible yields the updated landmark
localization matrix L∗

s. This procedure is repeated through all scales, resulting
in the final localization result L∗

S .
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Localization on Test Image
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Fig. 3. The localization of three landmarks on a test image/volume descends the scale
pyramid. At each level regression based on the image patch generates not only a position
estimate for the primary landmak, but also for other landmarks visible in the patch.
When progressing to a finer scale, for each landmark these estimates vote for the next
estimate and center of the finer patch.

Shape regularization The position estimates L∗
s are regularized by projecting

them onto the shape PCA model S and reconstructing them again thereafter.
This enforces landmark positions which can be modeled by a linear combination
of the shapes observed in the training data. This regularization is performed for
scales s ≤ S − 3, to allow for landmark positions which can not be modeled
though the shape model at scales s > S − 3.

3 Experiments

3.1 Data sets

We evaluated the proposed approach on the two separate data sets shown in
Fig. 1: 20 hand radiographs and 12 high resolution hand CTs.

Data set 1: Hand Radiographs N = 20 hand radiographs with an average size of
460×260 pixels with a resolution of 0.423mm/pixel were annotated with L = 24
landmarks. The landmarks include the five finger tips, as well as the distal inter-
phalangeal (DIP), proximal interphalangeal (PIP), metacarpophalangeal (MCP)
and carpometacarpal (CMC) joints for each finger.

Data set 2: Hand CTs The 3D hand CTs have a voxel size of 0.5mm×0.5mm×
0.66mm resulting in an average size of 256×384×330 voxels. They are annotated
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Residual in mm MRF-based graph-matching Proposed Patch-Regression Method
Median Mean Std Median Mean Std

Hand Radiographs 0.80 0.99 0.82 0.63 0.77 0.64
Hand CTs 1.19 1.45 1.13 1.43 1.96 1.80

Table 1. Experimental results, localization accuracy in mm: Residual distances of
the localization result to the ground truth annotation for the proposed method, in
comparison with a state of the art approach.

with the same 24 landmarks as the hand radiographs, with three additional land-
marks placed around the carpus at the radiocarpal, radioulnar, and ulnocarpal
joints, totaling in L = 27.

3.2 Setup

The experiments were run using four-fold cross validation, learning the landmark
regression codebook on 75% of the N images / volumes and performing the
localization on the remaining images / volumes. The main measure of interest
for each landmark is the residual distance between the position of the predicted
landmark position and the corresponding ground truth. The parameter settings
are identical for the experiments on the two data sets, except for the size of
the patches: 32 × 32 in the 2D case and 32 × 32 × 32 for the 3D data. The
results are compared with the recently proposed pre-filtered Hough regression
Random forests [?], which in turn showed to outperform alternative approaches
such as classification-based landmark candidate estimation with graph-based
optimization [1] and classification + mean-shift based approaches [13].

3.3 Results

The results of the evaluation of the landmark localization are presented in Tab. 1,
which shows the aggregated localization performance for the two data sets. The
accuracy on the 2D radiograph data set is very high with a median residual of
0.63 mm and a mean/std of 0.77/0.64 mm. This result compares favorably with
the results reported and methods tested on the same data in [?]. The result on
the 3D hand CT data set show a median residual of 1.43 mm and a mean/std
of 1.96/1.80 mm. It can be seen that despite a similar median residual, the
proportion of localizations with higher error is slighty larger in this case. The
run-times of the proposed approach were in the order of 0.6sec for the 2D data
set and 4.5sec for the 3D data set on a single core of a 2009 Xeon MacPro. The
method was entirely implemented in Matlab - we expect a potential speed-up
by a factor of 10 to 100 through a more optimized implementation.

3.4 Discussion - Feature computation complexity

The main contribution of this work is the demonstration of a feature computation
scheme which requires significantly less memory accesses then existing methods.
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Fig. 4. Number of image/volume accesses necessary to compute the features required
during the localization phase. Voxel-wise classification / prediction approaches [1, 10]
scale with the number of voxels, while pre-filtered Hough regression [?] works on
strongly downsampled volumes. In constrast to this, the proposed approach is indepe-
dent of the number of voxels and scales with the number of landmarks.

Voxel-wise classification / prediction approaches such as those proposed in [1,
10] scale with the number of voxels, while pre-filtered Hough regression [?] re-
duces computational complexity by working on strongly down-sampled volumes.
A typical number of 400 memory accesses to compute the classification for a sin-
gle voxel was assumed in the calculation, corresponding to e. g. 20 individual
features in an ensemble of 20 individual classifiers.

In contrast to this, the proposed approach is independent of the number of
voxels and only depends on the number of landmarks, with m ×m ×m voxels
sampled for the patch at each landmark and scale. The proposed approach thus
requires one to four orders of magnitude less image/volume accesses, allowing
for fast localization even in unoptimized implementations or cheap commodity
hardware.

4 Conclusion and Outlook

We present an approach for localizing complex, partly repetitive anatomical
structures in 2D and 3D data. We demonstrate that a top-down nearest neighbor
matching strategy of image patches drastically reduces the number of required
feature computations and that the prediction of relative landmark positions using
codebook regression is feasible.

The results on the two data sets clearly demonstrate the ability of the pro-
posed approach to find the landmark positions in the target volume with ac-
curacy comparable to the state of the art, with the consistent localization of
detailed anatomical structures with a median residual of 1.7 to 2.7 pixels/voxels.

We consider the results to be very promising for such a simple method,
and will focus on several topics in upcoming work: A detailed analysis of the
parameters involved, namely the patch size and the perturbation strategy during
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codebook generation, as well as approximations of the nearest neighbor search
through random subspaces.
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