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Abstract. Most medical images feature a high similarity in the intensi-
ties of nearby pixels and a strong correlation of intensity profiles across
different image modalities. One way of dealing with – and even exploit-
ing – this correlation is the use of local image patches. In the same
way, there is a high correlation between nearby labels in image anno-
tation, a feature that has been used in the “local structure prediction”
of local label patches. In the present study we test this local structure
prediction approach for 3D segmentation tasks, systematically evaluat-
ing different parameters that are relevant for the dense annotation of
anatomical structures. We choose convolutional neural network as learn-
ing algorithm, as it is known to be suited for dealing with correlation
between features. We evaluate our approach on the public BRATS2014
data set with three multimodal segmentation tasks, being able to obtain
state-of-the-art results for this brain tumor segmentation data set con-
sisting of 254 multimodal volumes with computing time of only 13 sec-
onds per volume.
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1 Introduction

Medical images show a high correlation between the intensities of nearby voxels
and the intensity patterns of different image modalities acquired from the same
volume. Patch-based prediction approaches make use of this local correlation
and rely on dictionaries with finite sets of image patches. They succeed in a
wide range of application such as image denoising, reconstruction, and even the
synthesis of image modalities for given applications [6]. Moreover, they were used
successfully for image segmentation, predicting the most likely label of the voxel
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in the center of a patch [17]. All of these approaches exploit the redundancy of lo-
cal image information and similarity of image features in nearby pixels or voxels.
For most applications, however, the same local similarity is present among the
image labels, e.g., indicating the extension of underlying anatomical structure.
This structure has already been used in medical imaging but only at global level,
where the shape of the whole segmented structure is considered, e.g. [13] or [21].
Here we will focus on local structure since global structure is not applicable for
objects with various shape and location such as brain tumors.

Different approaches have been brought forward that all make use of the
local structure of voxel-wise image labels. Zhu et al. [22] proposed a recursive
segmentation approach with recognition templates in multiple layers to predict
extended 2D patches instead of pixel-wise labels. Kontschieder et al. [8] extended
the previous work with structured image labeling using random forest. They in-
troduced a novel data splitting function, based on random pixel position in a
patch, and exploited the joint distributions of structured labels. Chen et al. [2]
introduced techniques for image representation using a shape epitome dictio-
nary created by affinity propagation, and applied it together with a conditional
random field models for image labeling. Dollar et al. [4] used this idea in edge
detection using k-means clustering in label space to generate an edge dictionary,
and a random forest classification to predict the most likely local edge shape.

In spite of the success of patch-based labeling in medical image annotation,
and the highly repetitive local label structure in many applications, the con-
cept of patch-based local structure prediction, i.e., the prediction of extended
label patches, has not received attention in the processing of 3D medical image
yet. However, approaches labeling supervoxels rather than voxels has already
appeared, e.g. hierarchical segmentation by weighted aggregation extended into
3D by Akselrod-Ballin et al. [1] and later by Corso et al. [3], or spatially adaptive
random forests introduced by Geremia et al. [5].

In this paper, we will transfer the idea of local structure prediction [4] using
patch-based label dictionaries to the task of dense labels of pathological struc-
tures in multimodal 3D volumes. Different from Dollar, we will use convolutional
neural networks (CNNs) for predicting label patches as CNNs are well suited for
dealing with local correlation, also in 3D medical image annotation tasks [9,
14]. We will evaluate the local structure prediction of label patches on a pub-
lic data set with several multimodal segmentation subtasks, i.e., on the 2014
data set of the Brain Tumor Image Segmentation Challenge [11], where a CNN
outperformed other approaches [19]. In this paper, we focus on evaluating de-
sign choices for local structure prediction and optimize them for reference image
segmentation task in medical image computing.

Brain tumor segmentation is a challenging task that has attracted some at-
tention over the past years. It consists of identifying different tumor regions in
a set of multimodal tumor images: the whole tumor, the tumor core, and the
active tumor [11]. Algorithms developed for brain tumor segmentation task can
be classified into two categories: Generative models use a prior knowledge about
the spatial distribution of tissues and their appearance, e.g. [15, 7], which re-
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quires accurate registration with probabilistic atlas encoding prior knowledge
about spatial structure at the organ scale [10]. Our method belongs to the group
of discriminative models. Such algorithms learn all the characteristics from man-
ually annotated data. In order to be robust, they require substantial amount of
training data [20, 23].

In the following, we will describe our local structure prediction approach
(Sec. 2), and present its application to multimodal brain tumor segmentation
(Sec. 3). Here we will identify, analyze, and optimize the relevant model param-
eters of the local structure prediction for all different sub-tasks and test the final
model on clinical test set, before offering conclusion (Sec. 4).

2 Methods

Fig. 1. Local structure
prediction: Image fea-
ture patches (with side
length d) are used to
predict the most likely
label patch (with side
length d′) in its center.
While standard patch
based prediction ap-
proaches use d′ = 1
(voxel), we consider in
this paper all values
with 1 ≤ d′ ≤ d.

The brain tumor segmentation problem consists of three
sub-problems: identifying the whole tumor region in a
set of multimodal images, the tumor core region, and the
active tumor region [11]. All three sub-tasks are process
separately, which changes the multi-class segmentation
task into three binary segmentation sub-tasks.

Structured prediction. Let x be the image patch of
size d×d from image space I. Focusing on 2D patches, a
patch x is represented as x(u, v, I) where (u, v) denotes
the patch top left corner coordinates in multimodal im-
age I(s, V ) where s denotes the slice position in multi-
modal volume V .

Label patches. Treating the annotation task for each
class individually, we obtain a label space L = {0, 1}
that is given by an expert’s manual segmentation of the
pathological structures. The label patch is then a patch
p of size d′ × d′ from the structured label space P, i.e.
P = Ld′×d′

. The label size d′ is equal or smaller than
the image patch size d. The label patch p is centered
on its corresponding image patch x (Fig. 1), and it is
represented as p(u + m, v + m,L) where L(s,W ) is a
manual segmentation in slice s of label volume W and
m denotes the margin defined as m = 1

2 (d− d′).
Optimal values for d and d′ and, hence, the ratio r =

d′

d may vary depending on the structure to be segmented
and the image resolution.

Generating the label patch dictionary. We cluster label patches p into N groups
using k-means leading to a label patch dictionary of size N . Subsequently, the
label template t of group n is identified as the average label patch of given
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cluster. In the segmentation process, these smooth label templates t are then
used for the segmentation map computation rather than strict border prediction
as used in previous local structure prediction methods [2, 8, 22]. The structures
are learned directly from the training data instead of using predefined groups
as in [22]. Examples of ground truth label patches with their representation by
a dictionary of size N = 2 (corresponding to common segmentation approach)
and N = 32 is depicted in Fig. 2.

The size of label patch dictionary N and, hence, the number of classes in the
classification problem, may differ between problems depending on variability and
shape complexity of the data.

(a) (b) (c)

Fig. 2. Ground truth label patches (a) with corresponding binary representation indi-
cating label at the central pixel (b), and structured (c) representation.

Defining the N -class prediction problem. After we have obtained a set of N clus-
ters, we transform our binary segmentation problem into an N class prediction
task: We identify each training image patch x with the group n that the corre-
sponding label patch p has been assigned to during the label patch dictionary
generation. In prediction, the label template t of the predicted group n (size
d′ × d′) is assigned to the location of each image patch and all overlapping pre-
dictions of a neighborhood are averaged. According to the experiments a discrete
threshold th = 0.5 was chosen for the final label prediction.

Convolutional Neural Network. We choose CNN as it has the advantage
of preserving the spatial structure of the input, e.g., 2D grid for images. CNN
consists of convolutional and pooling layers, usually applied in an alternating
order. The CNN architecture used in this work is depicted in Fig. 3. It consists
of two convolutional and two mean-pooling layers in alternating order. In both
convolutional layers, we use 24 convolutional filters of kernel size 5 × 5. The
input of the network is an image patch of size 4× d× d (four MR modalities are
present in multimodal volumes) and the output is a vector of length N indicating
membership to one of the N classes in the label patch dictionary.
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Fig. 3. Architecture of Convolutional Neural Network for d = 24. The input of the
network is a multimodal image patch. The output of the network are N probabilities,
where N denotes the size of label patch dictionary.

Slice Inference. Image patches from each multimodal volume are mapped
into four 2D input channels of the network, similar to RGB image mapping.
During the training phase, patches of given size are extracted from training
volumes. Using the same approach for testing is inefficient and therefore different
approach used in [12] is employed instead. The whole input 2D slice is fed to
the network architecture, which leads to much faster convolution process than
applying the same convolution several times to small patches. This requires
proper slice padding by to be able to label pixels close to slice border.

The output of the network is a map of label scores. However, this label map
is smaller than the input slice due to pooling layers inside the CNN architecture.
In our case with two 2× 2 pooling layers, there is only one value for every 4× 4
region. Pinheiro and Collobert [12] fed the network by several versions of input
image shifted on X and Y axis and merged the outputs properly. More common
approach is to upscale the label map to the size of the input image. The latter
approach is faster due to only one convolution per slice compared to 16 using the
former approach in our case. Both of them were tested and will be compared.

One can see the sequential processing of the input multimodal slice in Fig. 4.
4(b) and 4(c) depict 24 outputs of the first and the second convolutional layers
of CNN. 4(d) shows the final classification map of the CNN architecture. Note
the average labels for given group in 4(e). One can compare them to the ground
truth tumor border in the input image. The final probability map of the whole
tumor area is depicted in 4(f).

Since the hierarchy exist between particular segmentation sub-tasks, both
tumor core and active tumor are segmented only inside the whole tumor region.
This makes the segmentation process much faster. Although the hierarchy exist
between tumor core and active tumor as well, this approach is not used here
since the segmentation of tumor core is the most difficult sub-task and usually
the least accurate one.

Feature Representation. Before the processing of the data, the N4 bias
field correction [18] is applied and the image intensities of brain are normalized
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Sequential processing of multimodal slice (a). (b) and (c) show all 24 outputs of
the first and the second convolutional layer. (d) depicts the output of the whole CNN
architecture for given 16 groups with average patch labels depicted in (e). (f) shows
the final probability map of the whole tumor area with outlined brain mask (blue) and
final segmentation (magenta) obtained by thresholding at 50% probability.

by their average intensity and standard deviation. All volumes in the BRATS
database have the same dimension order and isotropic resolution, therefore the
axial slice extraction is straightforward and no pre-processing step to get images
in a given orientation and spatial resolution is necessary.

As it has been shown in [14], the computational demands of 3D CNN are
still out of scope for today’s computers. Therefore, we focus on processing the
volume sequentially in 2D in the plane with the highest resolution, in our case
the axial plane. Image patches from each multimodal volume are mapped into
four 2D input channels of the network. This approach gives a good opportunity
for parallelization of this task to reduce the run-time. Alternatives to this basic
approach have been proposed: Slice-wise 3D segmentation using CNN was used
in [14, 16]. The former showed non-feasibility of using 3D CNN for larger cubic
patches and proposed using of 2D CNN for each orthogonal plane separately.
The later proposed extraction of corresponding patches for given pixel from
each orthogonal plane and mapping them as separated feature maps. In our
work, we have tested both of these approaches and compared them to the single
slice approach that we chose.
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3 Experiments

Brain tumor segmentation is a challenging task that has attracted some atten-
tion over the past years. We use the BRATS data set that consists of multiple
segmentation sub-problems: identifying the whole tumor region in a set of mul-
timodal images, the tumor core region, and the active tumor region [11].

Image Data. Brain tumor image data used in this work were obtained from
the MICCAI 2014 Challenge on Multimodal Brain Tumor Image Segmentation
(BRATS) training set.4 The data contains real volumes of 252 high-grade and
57 low-grade glioma subjects. For each patient, co-registered T1, T2, FLAIR,
and post-Gadolinium T1 MR volumes are available. These 309 subjects contain
more measurement for some patients and only one measurement per patient was
used by us. The data set was divided into three groups: training, validation and
testing. Our training set consists of 130 high grade and 33 low grade glioma
subjects, the validation set consists of 18 high grade and 7 low grade glioma
subjects, and the testing set consists of 51 high grade and 15 low grade glioma
subjects, summing up to 254 multimodal volumes of average size 240×240×155.
From each training volume, 1500 random image patches with corresponding
label patches were extracted summing up to 244 500 training image patches.
The patches are extracted from the whole volume within the brain area with
higher probability around the tumor area.

Parameter Optimization Beside the parameters of the convolutional archi-
tecture, there are parameters of our model: image patch size d, label patch size
d′, and size of label patch dictionary N . These parameters were tested with pre-
optimized fixed network architecture depicted in Fig. 3, which consists of two
convolutional layers, both with 24 convolutional filters of kernel size 5× 5, and
two mean-pooling layers in alternating order. The values selected for subsequent
experiments are highlighted in graphs with red vertical line.

Image patch size. The image patch size d is an important parameter since the
segmented structures have different sizes and therefore less or more information
is necessary for label structure prediction. Figure 5 shows the Dice score for
different patch sizes with their best label patch size. According to the graphs,
d = 8 was selected for active part segmentation and d = 24 for tumor core and
whole tumor. All three tests were performed for N = 32, which according to the
previous tests is sufficiently enough for all patch sizes. The best results were in
all cases achieved for d′ ≥ 1

2d. The values selected for subsequent experiments
are indicated by red vertical line.

Size of label patch dictionary. The size of label patch dictionary N influence
differences between each label template t as well as the differences between

4 http://www.braintumorsegmentation.org/



8 Dvorak, P., Menze, B.

8 16 24 32 48 8 16 24 32 48 8 16 24 32 48
0.4

0.5

0.6

0.7

0.8

0.9

1

Patch size

D
ic

e 
sc

or
e

Fig. 5. Dice score as a
function of the image
patch size d with its
best label patch size d′

with label patch dictio-
nary size N = 32 for the
whole tumor (blue), tu-
mor core (green) and ac-
tive tumor(red).

belonging image patches x in each groups n. The results for several values of N
are depicted in Fig. 6. Generally the best results were achieved for N = 16. The
results were evaluated in similar manner as in the previous test, i.e. the best d′

is used for each value of N . The values selected for subsequent experiments are
indicated by red vertical line.
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Fig. 6. Dice score as a
function of label patch
dictionary size N us-
ing the optima of Fig. 5:
d = 24 for whole tumor
(blue), d = 24 for tumor
core (green), d = 8 for
active tumor (red).

Label patch size. The label patch size d′ influences the size of local structure
prediction as well as the number of predictions for each voxel. Figure 7 shows
the increasing performance with increasing d′. The values selected for subsequent
experiments are indicated by red vertical line.
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Fig. 7. Dice score as a
function of label patch
size d′ for whole tumor
(blue) with d = 24,
tumor core (green) with
d = 24, and active tu-
mor (red) with d = 8,
with label patch dictio-
nary size N = 16.

2D versus 3D. We have tested both triplanar and 2.5D deep learning approaches
for 3D data segmentation as proposed in [14] and [16], respectively, and compared
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them to single slice-wise segmentation. For both approaches, we have obtained
about the same performance as for single slice-wise approach: the triplanar 2.5D
segmentation decreased the performance by 2%, the 3D segmentation to a de-
crease of 5%. This observation is probably caused by lower resolution in sagittal
and coronal planes.

Application to the test set. After the optimization of the parameters using
validation set, we tested the algorithm on a new set of 66 subjects randomly
chosen from BRATS 2014. The performance for both validation and test set of
all three segmented structures is summarized in Tab. 1. For the test set, we
achieved average Dice scores 83% (whole tumor), 75% (tumor core), and 77%
(active tumor). The resulting Dice scores are comparable to intra-rater similarity
that had been reported for the three annotation tasks in the BRATS data set [11]
with Dice scores 85% (whole tumor), 75% (tumor core) and 74% (active tumor)
and to the best results of automated segmentation algorithms with the Dice
score of the top three in between 79%–82% (here: 83%) for the whole tumor
segmentation task, 65%–70% (here: 75%) for the segmentation of the tumor
core, and 58%–61% (here: 77%) for the segmentation of the active tumor region.

We show segmentations generated by our method and the ground truth seg-
mentations for the three regions to be segmented on representative test cases
in Fig. 8.

Table 1. Segmentation results on validation and test data sets, reporting average and
median Dice scores. Shown are the results for all three segmented structures, i.e., whole
tumor, tumor core and active tumor. Scores for active tumor are calculated for high
grade cases only. “std” and “mad” denote standard deviation and median absolute
deviance. HG and LG stand for high and low grade gliomas, respectively.

Dice Score Whole Core Active
(in %) HG / LG HG / LG

Validation set
mean ± std 81±15 80±17 / 85±06 79±13 85±08 / 65±15 81±11

median ± mad 86±06 86±07 / 85±05 85±06 85±03 / 73±10 83±08

Test set
mean ± std 83±13 86±09 / 76±21 75±20 79±14 / 61±29 77±18

median ± mad 88±04 88±03 / 87±05 83±08 82±07 / 72±14 83±09

Compute time vs accuracy. We have also tested the possibility of subsam-
pling the volume in order to reduce the computational demands. The trade off
between accuracy and computing time per volume is analyzed in Tab. 2 by run-
ning several experiments with different resolutions of the CNN output before final
prediction of local structure (first column) as well as different distances between
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segmented slices (second column), i.e., different sizes of subsequent segmentation
interpolation. All experiments were run on 4-core CPU Intel Xeon E3 3.30GHz.
As one can see in the table, the state-of-the-art results can be achieved in an
order of magnitude shorter time than in case of most methods participated in
BRATS challenge. Thanks to fast implementation of the CNN segmentation, all
three structures can be segmented in whole volume in 13 seconds without using
GPU implementation. Processing by the CNN is approximately 80% of the over-
all computing time, while assigning final labels using local structure prediction
requires only 17%. The rest of the time are other operations including interpola-
tion. The overall training time, including label patch dictionary generation and
training of all three networks using 20 training epochs, was approximately 21
hours.

Table 2. Tradeoff between spatial subsampling, computing time, and segmentation
accuracy. First two columns express different CNN output resolution, i.e., after sub-
sampling in x and y, and steps between segmented slices, i.e., after subsampling in z
direction.

CNN output Slice Computing time Dice Score (in%)
resolution step per volume Whole Core Active

1/4 4 13s 83 75 73
1/4 2 22s 84 75 74
1/4 1 74s 84 75 75

1/2 4 24s 83 75 74
1/2 2 41s 83 75 76
1/2 1 142s 84 75 76

1/1 4 47s 83 75 75
1/1 2 80s 83 75 77
1/1 1 280s 83 75 77

4 Conclusion

We have shown that exploiting local structure through the use of the label patch
dictionaries improves segmentation performance over the standard approach pre-
dicting voxel wise labels. We showed that local structure prediction can be com-
bined with, and improves upon, standard prediction methods, such as a CNN.
When the label patch size optimized for a given segmentation task, it is capable of
accumulating local evidence for a given label, and also performs a spatial regular-
ization at the local level. On our reference benchmark set, our approach achieved
state-of-the-art performance even without post-processing through Markov ran-
dom fields which were part of most best performing approaches in the tumor
segmentation challenge. Moreover, the all three structures can be extracted from
the whole volume within only 13 seconds using CPU obtaining state-of-the-art
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results providing means, for example, to do online updates when aiming at an
interactive segmentation.

Fig. 8. Example of consensus expert annotation (yellow) and automatic segmentation
(magenta) applied to the test image data set. Each row shows two cases. From left to
right: segmentation of whole tumor (shown in FLAIR), tumor core (shown in T2) and
active tumor (shown in T1c).
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