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1 Introduction

In the diagnosis of brain tumors, extensive imaging protocols are routinely used
to evaluate therapeutic options or to monitor the state of the disease. This gives
rise to large numbers of multi-modal and multi-temporal image volumes even
in standard clinical settings (Figure 1), requiring new approaches for compre-
hensively integrating information of different image sources and different time
points. As all observations in these data sets arise from one underlying physiolog-
ical process – the tumor-induced change of the tissue – a patient-specific model
of tumor growth may provide new means for analyzing the acquired images and
evaluating patient’s options.

Mathematical tumor growth models try to explain the complex dynamics of
cancer progression as a function of biological processes, which are assumed or
known from prior experiments. Examples of such processes are the dynamics of
individual tumor cells, their interactions with each other, their interactions with
the surrounding tissue through mechanical or biochemical mechanisms or the
generation, transport and allocation of substances relevant to specific biochem-
ical processes.

In biomedical research, experiments may provide access to observables at
the cellular level, e.g., to internal dynamics of cells, vascularization, and other
factors such as acidity or cell-specific promoter substances. Consequently, tumors
are often modeled at microscopic scale considering the dynamics at cellular level
[1]. In clinical applications, the primary source of information is from medical
images. Consequently, image-based tumor modeling matches the macroscopic
scale. It describes the average behavior of tumor cells and macroscopic effects
and general features at organ level, such as tumor invasion in white and gray
matter, or the deformation of the brain due to the mass effect of the tumor.

While tumor modeling is well established in interpreting biomedical experi-
ments, and is a tool for generating and testing hypothesizes about tumor pro-
cesses and properties, little progress can be reported from clinical, personalized
tumor modeling. Here, inferring personalized descriptors of disease or disease
progression would potentially provide novel means for the quantification of tu-
mor growth, staging of the disease, adaption of irradiation margin in radiation
therapy planning, or the optimal dose application in chemotherapy.
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Fig. 1. Segmentation of the 44 MR volumes of a single patient with a glioma
using a lesion-specific atlases for all ten time points of a multimodal image
volume. Note that some modalities are missing for certain time points – which
is a common problem in longitudinal studies. The tumor outlines are obtained
using the latent atlas approach by Riklin-Raviv et al. [2, 3]

Evaluating image information using functional models of tumor growth can
be stated as a problem of optimal control. We will review related work from
the field of medical image analysis in this chapter. We will first describe gen-
eral directions in the image-based modeling of tumor growth by highlighting a
number of select studies (Section 2), and then point out standard applications
of tumor models in the field of medical image processing (Section 3). Our overall
application focus is on models of glioma, the most frequent and most aggressive
of the primary brain tumors.

2 Image-based tumor modeling

The information available from an image observation, such as computed tomog-
raphy scans, or magnetic resonance imaging, is at a macroscopic scale – with
typical spatial resolutions at the millimeter level. Among the tumor-induced
processes visible at this scale, two effects are most prominent: changes in tis-
sue properties resulting from the invasion of healthy tissue by tumor cells, and
the displacement of tissue resulting from tumor growth. Visible from images in
clinical imaging protocols are, for example, differences in the amount of tissue
water (T2, Flair-MRI), in the diffusivity of water (DTI) or blood (DCE-MRI),
the integrity of the blood-brain barrier (post-Gadolinium T1-MRI), or changes
in the relative concentrations of selected metabolites (MRSI). Displacements can
be observed in any modality with sufficient resolution and tissue contrasts. As a
consequence, image-based tumor models can be grouped into two classes: models
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that concentrate on the migration of tumor cells and their invasive processes, and
models that consider the mechanical mass effect of the lesion and their imprint
on surrounding tissues.

A particular problem in image-based tumor modeling is the estimation of
patient-specific and disease-specific model parameters, i.e., in inverting the for-
ward model equations. Few studies address this difficulty, as Hogea et al. do in
[4] using a registration framework, or even present models which are consistent
with the observed information, such as Konukoglu’s approach [5] based on a
preceding tumor segmentation (Figure 2).

2.1 Reaction-diffusion models of cell invasion

The majority of all macroscopic glioma models use the reaction-diffusion formal-
ism [6]. In particular the Fisher-Kolmogorov model – very generally describing
the dynamics of invasive populations – enjoys popularity as a simplified model
of tumor growth.

∂u

∂t
= ∇ · (D∇u) +R(u, t) (1)

where u is the tumor cell density, ∂u/∂t is the differentiation operator with
respect to time, D is the diffusion tensor for tumor cells, which can be a function
of location x, and R(u, t) is the reaction term.

This partial differential equation models changes in a continuous tumor cell
density u by two individual processes considering cell migration and cell dou-
bling. The first term on the right-hand side, ∇ · (D∇u), describes the invasion
of tumor cells as a diffusive flux along the concentration gradient (Fick’s diffu-
sion). This process is characterized by the diffusion tensor D. The second term
in the equation, R(u, t), describes the cell doubling, or proliferation, of tumor
cells as a function of the current cell concentration. Common population growth
equations for this reaction term are exponential, logistic and Gompertian. Ex-
ponential growth models use R(u, t) = ρ · u and are valid for low tumor cell
concentrations, with ρ being the proliferation constant determining cell dou-
bling. Logistic and Gompertian reaction terms represent self-limiting growth,
with R(u, t) = ρ · u · (1− u) and R(u, t) = ρ · u ln(1/u), respectively.

In addition to the general, functional description on tumor cell evolution
governed by eq. (1), there are no-flux boundary conditions such as

η · (D∇u) = 0 (2)

introducing additional structural information on the patient-specific shape and
geometry of the brain. These boundary conditions consider that tumor cells will
only migrate within white and gray matter tissues along normal directions η
of boundaries to other tissues. Tissue boundaries are derived from a preceding
tissue segmentation in a patient-specific manner.
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Fig. 2. Three-dimensional evolution of tumor growth and the prediction of tumor
development for a patient with a low grade glioma, using the model approxima-
tion of Konukoglu et al. [5]. Shown are two FLAIR-MRI image slices (top and
bottom row) with manual tumor delineations (white) used to parameterize the
growth model. Green outlines in column two and three represent results from
fitting the model to observations one to three. Red outlines in the final, forth
column represent an extrapolation of the parameterized tumor model by 180
days beyond the third observation. Predictions are in good accordance with the
true evolution of the tumor.
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An early study proposing to use a reaction-diffusion framework for modeling
tumor growth in patients with gliomas was Cruywagen et al. in [7]. They included
the effect of treatment as another, negative reaction term R(u, t) in eq. (1). In
this model the invasion of tumor cells is assumed to be isotropic, following a
homogeneous diffusion, i.e., with D being a global scalar value.

In a subsequent study, and motivated by experimental results of Giese et
al. [8], Swanson et al. [9] proposed to improve on this model by assuming nonho-
mogeneous diffusion. To consider the differential motility of tumor cells in gray
and white matter, they replaced the diffusivity constant D by an isotropic but
nonhomogeneous diffusion coefficient D(x). D(x) took on two different values in
the white matter, dw, and in the gray matter, dg, where dw � dg acknowledges
the observation that tumor cells move faster in white matter. In [10], they later
also included the effect of chemotherapy, again by using a negative reaction term
R(u, t, x) in eq. 2.3. Here, the term is a function of both time and space, con-
sidering the time of drug delivery and the possible spatial heterogeneity of the
drug efficacy. In their study, by comparing with real cases, the authors showed
qualitatively that such models may successfully predict survival times.

Extending the idea of Swanson et al. [9], and refining on the differential motil-
ity of tumor cells in different tissues, Clatz et al. [11] and later Jbabdi et al. [12]
proposed to use anisotropy to model the invasion mechanism of tumor cells. They
modeled the diffusivity of tumor cells through an anisotropic-nonhomogeneous
diffusion. The assumption they made is that tumor cells not only move faster in
white matter, but also follow the white matter fiber tracts in the brain. This idea
followed the observation that tumor cells tend to follow the preferred directions
of water diffusion tensors D(x), which can be measured using magnetic reso-
nance diffusion tensor imaging (MR-DTI). These models were able to consider
the resulting anisotropy in white matter diffusion and to capture the “spiky”
and fingering patterns of tumors observed in the images. Both authors evaluate
their models qualitatively by comparing visible tumors in the magnetic resonance
images with the ones simulated with the model.

The general problem with the tumor model of eq. (1)-(2) is the observability
of the modeled quantity u. While it describes the continuous evolution of tumor
cell density u, these tumor cell densities cannot be observed from images di-
rectly. Konukoglu et al. [5] propose a parameter estimation method model that
is consistent with the observed information in a standard MRI. For time series
of medical images, they proposed to use the tumor delineation to identify corre-
spondences between images acquired at different time points (Figure 2). To this
end, Konukoglu et al. used a traveling wave approximation of the anisotropic and
inhomogeneous reaction-diffusion model, eq. (1), to estimate a speed of growth
that is parameterized by D(x) and ρ. It is implemented with a fast parameter
identification where

C =
1
2

[dist(Γ2, Γ2), dist(Γ2, Γ2)] (3)
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is the cost function to be minimized, based on two available tumor segmentations
Γ2 from time point t1 and Γ1 from time point t1, and

Γ2 = {x|T (x) = t2 − t1,
√
∇TD∇T =

1
2
√
ρ
, T (Γ1) = 0} (4)

is the optimization objective. T (x) is an implicit time function that embeds the
positions of the tumor delineation as an iso-time surface, i.e., it represents the
time when the visible tumor border passes over the point x. Tumor growth is
described by the Eikonal equation

√
∇TD∇T = 1/(2

√
ρ) derived from eq. (1),

starting with the tumor segmentation Γ1 available at time point t1. Konukoglu
uses an unconstrained optimization proposed by Powell [13] for estimating the
model parameters. Modeling the front propagation as a traveling wave using the
fast marching approach showed to be 2000 times faster than solving the reaction
diffusion problem and, in a test for both low and high grade glioma patient data,
showed good agreement with the actual development of the tumor (Figure 2).

2.2 Coupled bio-mechanical models of tissue displacement

The reaction-diffusion formalism, eqs. (1)-(2), models tumor growth as a reac-
tive flow into a porous medium – with reactive tumor cells migrating into the
surrounding, sponge-like tissues. In this model, tumor cells replace or transform
healthy tissue, and the “mass effect” of newly generated cells is neglected. Bio-
mechanical models explicitly consider this mass effect, model the interaction
between tumor and its surroundings, and the displacement of the healthy tissue
resulting from it. These models consist of two formal components: the tumor
growth and the mechanical characteristics of the whole brain. Approaches have
to make strong assumptions on the bio-mechanical properties of the brain, in
particular on the elasticity and viscosity of the tissue, and the character of the
mechanical coupling. A particular difficulty is in estimating parameters of the
model from image information here, too.

Wasserman et al. [14] modeled brain tissue as a linear elastic material. The
stress-strain relations are modeled by the generalized Hooke’s law, and the
amount of strain imposed on the tissue is proportional to the density of the
tissue. For tumor growth, they assume an exponential growth rate, i.e., a con-
stant cell doubling increase. They couple tumor and tissue model by assuming
that pressure will be proportional to the volume of the neoplastic tissue.

Kyriacou et al. [15] improved on this by modeling brain tissue as an incom-
pressible, hyper-elastic neo-Hookean material. Tumor growth is also modeled
as an exponential process imposing the same strain as in [14]. They consider
complex boundary conditions, and use their model to register patients with
tumor-induced deformation to a standard tissue atlases.

Mohamed and Davatzikos [16] propose to model the brain tissue as an isotropic
and homogeneous hyper-elastic material. They assume an exponential tumor
growth, considering the mass effect caused by the edema surrounding the tu-
mor. Pressure induced on the tissue by the tumor and edema is proportional
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to the added volume. In [17], Hogea et al. reformulated the model with a level-
set-based approach for the evolving tumor aiming at a more efficient method.
They point out the use of patient-specific models with parameters estimated by
solving an inverse problem.

Gevertz et al. [18] incorporated the impact that organ-imposed physical con-
finement and heterogeneity have on the tumor into their computational model.
They show that models need to have organ geometry and topology in order to
draw correct conclusions about tumor spread, shape and size. They also show
that the impact that confinement has on the tumor growth is greater when the
tumor is growing close to the confining boundary. They conclude that tumor
models must consider shape, structure of organ and location of tumor within
the organ to accurately predict the tumors growth dynamics.

2.3 Joint invasion and displacement models

Few approaches consider the invasion of tumor cells or tissue water (“edema”),
and the displacement of the tissue resulting from the mass effect at the same
time.

When introducing anisotropic nonhomogeneous diffusion for modeling tumor
cell invasion in [11], Clatz et al. also considered tissue deformation due to bulk
tumor growth. In their model brain tissue is modeled as a linear viscoelastic
material in static equilibrium. Local pressure is caused by the mass effect both
from tumor growth and the invasive process. With this model, they were able
to simulate invasion and mass effect simultaneously.

Hogea et al. [4] use an optimal control framework to model the brain tissue
as a piecewise linearly elastic material. The mass effect of tumor bulk and its
infiltration are captured by a reaction-diffusion-advection model. Diffusion is
isotropic as in [7]. The mechanical coupling is via the pressure field which is a
parameterized function of the tumor cell density. The displacement is considered
by complementing eq. (1) with an advection term:

∂u

∂t
= ∇ · (D∇u) +∇(uv) + R(u, t) (5)

with tumor cell drift v. They also propose an adjoint-based, PDE-constrained
optimization formulation for estimating model parameters from displacements
visible in standard magnetic resonance images. They put forward two different
objective functionals, matching the spatiotemporal evolution of the normalized
tumor density u(x, t) and landmark registration. Hogea conducted 1D exper-
iments to show, for solving the optimization problem, the advantages of esti-
mating the gradient of the objective functional in terms of the adjoints. The
advantages are that there is only one solution required of the adjoint system
(per optimization iteration) despite the number of inversion variables, and good
scalability with regards to the number of control variables.
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2.4 Modeling the response to therapy

Studies as [19, 10] propose simple approaches for considering the effect of therapy
by using additional reaction terms in eq. (1). A large body of literature in opti-
mal control considers drug delivery and reaction of tissue to radiation therapy. In
general, however, these approaches do not aim at patient-specific optimization
using image information, as in most cases the modeled quantities are not avail-
able at image scale. For modeling the temporal evolution of complex functional
processes those approaches may use global information from chromatography,
mass spectrometry, near infrared spectroscopy, and nuclear magnetic resonance
spectroscopy instead. As a consequence, few models consider the spatial compo-
nent in tumor evolution and inverse modeling.

One example estimating distributed parameters is Chakrabarty et al. [20],
proposing an approach to optimizing drug delivery to brain tumors through an
optimal control framed problem. Chakrabarty’s goal is to minimize these tumor
functionals with respect to the drug input rate, also considering physical restric-
tion on the amount and costs of drugs that can be administered. This results in
a coupled system of equations with a forward state equation and a backward co-
state equation that are solved using a modified double-shot, forward-backward
method. They propose an algorithm to decide the optimal drug delivery using
an optimal distribution of the drug about the initial tumor location, and they
tested their model in 1D.

3 Tumor models in medical image analysis

A major field in medical image processing is three dimensional segmentation
for localizing and quantitatively measuring anatomical structures of particular
interest. The accurate segmentation of normal and tumorous tissues are also
of crucial importance in personalizing tumor growth models. Here, generative
models for both physiology and image appearance of tumors may serve the pur-
pose of providing realistic,“ground truth” data sets to evaluate segmentation
approaches.

Many tools for image segmentation have evolved around registration meth-
ods. Consequently, tumor models have been used repeatedly to address problems
such as atlas-to-patient registration and segmentation in the presence of a lesion.
In these cases pathological changes render standard atlases as useless, and using
an appropriate tumor modeling framework allows one to adapt generative image
models with respect to tissue displacements resulting from tumor growth. This
increases the accuracy of image registration in the presence of extensive lesions.

3.1 Generative tumor models in image segmentation

Manual tumor segmentations show a high variability between raters. Different
approaches may be used to infer a single, accurate segmentation from multiple tu-
mor outlines [21]. This problem multiplies when multi-modal imaging sequences
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are used and different tumor-induced changes become visible in the different
modalities, demanding for robust automated segmentation approaches. Exam-
ples for such approaches are the level set-based segmentation by Riklin-Raviv et
al. [2, 3] using a latent atlas prior for modeling the lesion (Figure 1), or the gen-
erative probabilistic model of both brain tissues and tumor segments by Menze
et al., amending the standard EM segmentation with a similar prior to obtain
tissue segmentations of both the healthy brain and the tumor outlines for ev-
ery modality at the same time [22]. Accurately segmenting tumors in different
modalities, however, remains a difficult task due to the high variability of tumor
location, shape, and image texture. Here, tumor growth modeling can be used
to synthetically generate both realistic tumor images, for different tumor types,
tumor locations, in different modalities, and to provide quantitative “ground
truth” segmentations for evaluating different tumor segmentation strategies, as
in Kaster et al. [21].

Generating realistic appearing images has two components: it requires a
model of the tumor growth process, and an image appearance model describing
the effect of tumor growth on the image appearance, i.e., if and how tumor cell
infiltrate the surrounding tissues, and if and how actively proliferating areas,
edema and necrosis change the observed MR signal intensities.

Rexilius et al. [23] report one of the first approaches for such a synthetic
image data generation. They use a basic tumor model with three compartments:
the active tumor, the necrotic tumor core, and the edema in the surrounding
tissue. The active tumor is manually drawn on the MR image of a healthy
subject. A radial displacement model is adapted to fit its size and model the
resulting displacement of the surrounding tissue, assuming linear elastic material
properties for gray and white matter. The image intensities in the active and
necrotic regions are modeled as Gaussian mixtures with predefined average and
variance. Edema is modeled in the white matter with the intensity fading with
increasing distance to the active tumor.

An approach for realistic MR images using a more sophisticated tumor
growth model and an improved image appearance model has been developed by
Prastawa et al.[24]. It is based on the tumor growth model by Clatz et al. [11]
with extensions considering the displacement and destruction of white matter
fibers in DTI-MRI, motivated by observations of Lu et al. [25]. They also model
the dynamics of the contrast agent, its high-contrast accumulation in the cere-
brospinal fluid and in the active tumor regions. For edema and active tumor
regions, the image appearance is modified using characteristic image textures.

3.2 Generative tumor models in image registration

The registration of a patient’s MRI with a large lesion to an anatomical atlas is
a difficult task. An essential idea in this process, essential for example in the task
of tissue segmentation, is to separate standard inter-subject variation of brain
anatomy – captured in anatomical atlases, i.e., priors on the spatial distribution
of the brain tissues – from the patient-specific, tumor-induced deformations.
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Kyriacou et al. [15] propose a pipeline for correcting tumor-induced modifica-
tions of the normal anatomy. They simulate the resection of the tumor allowing
images to be registered to a standard atlas and obtain a “tumor-free” image of
the patient in a first step. Using these tumor-free images together with the real
observations, they estimate parameters of a simple tumor growth model in a
second step. The mass effect of the optimal tumor model is then used to modify
the standard atlas, and to perform the final atlas-to-patient registration with
subsequent segmentation.

In [26], Cuadra et al. proposed an approach requiring manual user inter-
action for identifying landmarks in the atlas and patient images. The tumor
is modeled as a radial displacement on surrounding structures. The resulting
displacement field is considered in a nonlinear registration using the “demons”
registration algorithm.

Mohamed et al. [27] took a statistical approach jointly modeling normal and
tumor-induced variation. They extend the idea of using atlases for variability
between healthy subjects. They suggest to decompose the deformation field from
a nonlinear registration into the natural variability between healthy subjects and
the tissue displacements resulting from tumor growth. The formation fields of the
normal brain are estimated from healthy subjects. Tumor growth is simulated
by generating a space of displacement fields that results in tumor variation. The
simulated tumor varies over different growth parameters, location and observed
extent of tumor and edema. Once the deformation field linking the atlas to the
subject and tumor growth parameters are found, the atlas is registered and the
tumor is grown in it. An extension has been proposed by Zacharaki et al. [28].

4 Perspectives and further directions

In this chapter we summarized general approaches in the image-based modeling
of tumor growth and pointed out studies of specific relevance in the design of
these models. Most of these image-based approaches integrate image informa-
tion into basic reaction-diffusion models, with or without coupling the tumor
model and the displacement of the healthy tissues. These approaches are closely
coupled to image registration and segmentation tasks. Major difficulties are in
finding image descriptors which are consistent with the modeling framework –
or, vice versa, a modeling framework that is consistent with the available im-
age information – and in overcoming difficulties arising when approaches that
showed to be useful in one or two dimensional examples are generalized to real
clinical image data in 3D.

Further directions may be in developing more complex models of tumor
growth, modeling nutrient, oxygen, and metabolite levels in the tumor, con-
sidering further structural model components of brain anatomy, or phenom-
ena at the microscopic scale. Imaging modalities providing richer information
than tumor outlines, such as positron emission tomography (PET), magnetic
resonance spectroscopic imaging (MRSI) [29], diffusion contrast-enhanced MRI
[30], functional-MRI (fMRI) [31], or other, even more specific molecular imag-
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ing modalities may serve as the basis for such model extensions. A large body of
studies on personalized management of tumor therapy, potentially to be used for
such model extensions, is available from the field of theoretical biology and also
frequently used in optimal control. Further work will be required to find princi-
pled, straightforward approaches for assimilating 3D image information into the
bio-physical framework of those models.

Overall, the main prospect of image-based tumor modeling will be in quan-
titative personalized diagnostics and therapy optimization, but also in studying
population statistics using novel computational descriptors of disease progres-
sion to be correlated, for example, with genetic descriptors to enhance the un-
derstanding of the disease.
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