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1 Introduction

In this paper, we evaluate a generative-discriminative approach for multi-modal
tumor segmentation that builds – in its generative part – on a generative sta-
tistical model for tumor appearance in multi-dimensional images [1] by using
a “latent” tumor class [2, 3], and – in its discriminative part – on a machine
learning approach based on a random forest using long-range features that is
capable of learning the local appearance of brain lesions in multi-dimensional
images [4, 5]. The approach combines advantageous properties from both types
of learning algorithms: First, it extracts tumor related image features in a robust
fashion that is invariant to relative intensity changes by relying on a generative
model encoding prior knowledge on expected physiology and pathophysiologi-
cal changes. Second, it transforms image features extracted from the generative
model – representing tumor probabilities in the different image channels – to
an arbitrary image representation desired by the human interpreter through an
efficient classification method that is capable of dealing with high-dimensional
input data and that returns the desired class probabilities. In the following, we
shortly describe the generative model from [1], and input features and additional
regularization methods used similar to our earlier discriminative model from [4].

2 Generative Tumor Model

We use a generative modeling approach, in which we first build an explicit sta-
tistical model of image formation and subsequently use this model to derive a
fully automatic segmentation algorithm. We follow closely our description of the
method from [1]. The structure of the generative probabilistic model provides
strong priors on the expected image patterns. For segmenting magnetic reso-
nance (MR) images, it has the advantage that model parameters describing the
observed image intensities serve as nuisance parameters. This makes it robust
against tissue specific changes of the image intensity, and the algorithm does
not depend on intensity calibration methods – often required for learning ap-
proaches that use image intensities as input – that may be prone to errors in
the presence of lesions that vary in size and image intensity. Moreover, gener-
ative image appearance model can be combined with other parametric models



used, for example, for registration [6] or bias field correction [7], and even more
complex image modification that can be “regressed out” in the same way.

Tumor appearance model We model the normal state of the healthy brain us-
ing a spatially varying probabilistic prior πk, a standard population atlas, for
each of the K = 3 tissue classes that are visible from the given images (gray
matter, white matter, and cerebrospinal fluid). The normal state ki is shared
among all C channels at voxel i. We model the tumor state using a spatially
varying “latent” probabilistic atlas α, similar to [2]. At each voxel i, this atlas
provides a scalar parameter αi that defines the probability of observing a tumor
transition at that voxel. Parameter αi is unknown and is estimated as part of
the segmentation process. We further assume that image observations yci are
generated by Gaussian intensity distributions for each of the K tissue classes
and the C channels, with mean µck and variance vck, respectively. If the image in
channel c shows a transition from normal tissue to tumor in voxel i (i.e., if tissue
state sci = T ), the normal observations are replaced by intensities from another
set of channel-specific Gaussian distributions with mean µcT and variance vcT ,
representing the tumor class.

Biological constraints on the estimated parameters We seek Maximum Likeli-
hood estimates of the model parameters {θ,α} by estimating the tissue state
vector si of every voxel i that indicates the type of tissue visible in the dif-
ferent image modalities. The vector has sci = T in all channels that show tu-
mor, and has value sci = ki in all channels that appear normal. With K = 3
tissues types and C = 4 channels (for the given data), the cardinality of the
state vector is |s| = K ∗ 2C = 3 ∗ 24 = 48. However, plausibility constraints
on the expected tumor appearance in the different channels apply, for example
ruling out tumor-induced intensity changes in T1gad unless the same location
also shows tumor-induced changes in both T2 and FLAIR, and only gray and
white matter being able to show tumor transitions, the number of possible tis-
sue states reduces to |s| = 7. We estimate the most likely state vector si in a
standard expectation maximization procedure, similar to the “EM segmention”
algorithm, with iterative updates of the parameters {θ̃, α̃} and the posterior

probabilities p(si|ki,yi; θ̃, α̃). Updates can be performed using intuitive closed-
form expressions: the latent tumor prior α̃i is an average of the corresponding
posterior estimated, and the intensity parameters µ̃c and ṽc are updated with
the weighted statistics of the data for the healthy tissues and for the tumor
class. During the iteration we enforced that tumor voxels are hyper- or hypo-
intense with respect to the current average gray value of the white matter tissue
(hypo-intense for T1, hyper-intens for T1gad, T2, FLAIR) similar to [8]. Also
we encourage smoothness of the tumor labels by extending the latent atlas α to
include a Markov Random Field (MRF) prior, relaxing the MRF to a mean-field
approximation with an efficient approximate algorithm. Different from [1], we
now use channel-specific regularization parameters β that are all in the range of
.3 to 1. Typically convergence is reached after 10-15 updates.



Channel-specific tumor and tissue probabilities Once we have an estimate of the
model parameters {θ̂, α̂}, we can evaluate the probability that tumor is visible in
channel c of voxel i by summing over all the configurations Si for which Sci = T :

p(sci = T |yi; θ̂, α̂) =
∑
ti

δ(sci , T ) p(ti|yi; θ̂, α̂), (1)

where δ is the Kroneker delta that is 1 for sci = T and 0 otherwise. The generative

model returns C tumor appearance map p(sci = T |yi; θ̂, α̂), one for each channel
of the input volume. It also returns the probability maps for the K healthy
tissues p(ki|yi; θ̂, α̂), with global estimates for each voxel i that are valid for all
C images.

3 Discriminative Lesion Model

The present generative model returns probability maps for the healthy tissues,
and probability maps for the presences of characteristic hypo- or hyper-intens
changes in each of the image volumes. While this provides highly specific infor-
mation about different pathophysiological processes induced by the tumor, the
analysis of the multimodal image sequence may still require to highlight specific
structures of the lesion – such as edema, the location of the active or necrotic
core of the tumor, “hot spots” of modified angiogenesis or metabolism – that
cannot directly be associated with any of these basic parameter maps returned.
As a consequence, we propose to use the probabilistic output of the generative
model, together with few structural features that are derived from the same
probabilistic maps, as input to a classifier modeling the posterior of the desired
pixel classes. In this we follow the approach proposed by [4] that prove useful for
identifying white matter lesion in multiple input volumes. The building blocks of
this discriminative approach are the input features, the parametrization of the
random forest classifier used, and the final post-processing routines.

Image features As input feature describing the image in voxel i we use the
probabilities p(ki) for the K = 3 tissue classes (xki ). We also use the tumor
probability p(sci = T ) for each channel C = 4 (xci ), and the C = 4 image
intensities after calibrating them with a global factor that has been estimated
from gray and white matter tissue (ximi ). From these data we derive two types
of features: the “long range features” that calculate differences of local image
intensities for all three types of input features (xki , xci ,x

im
i ), and a distance

feature that calculates the geodesic distance of each voxel i to characteristic
tumor areas.

The first type of features calculate the difference between the image intensity,
or scalar of any other map, at voxel j that is located at v and the image intensity
at another voxel k that is located at v + w (with v here being 3D spatial
coordinates). For every voxel j in our volume we calculate these differences

xdiffj = xj − xk for 20 different directions w around v with spatial offsets



between 3mm to 3cm. To reduce noise the subtracted value at v+w is extracted
after smoothing the image intensities locally around voxel k (using a Gaussian
kernel with 3mm standard deviation).

The second type of features calculates the geodesic distance between the lo-
cation v of voxel j to specific image feature that are of particular interest in
the analysis. The path is constrained to areas that are most likely gray matter,
white matter or tumor as predicted by the generative model. More specifically,
we use the distance of xδtissuej of voxel j to the boundary of the the brain tissue

(the interface of white and gray matter with CSF), and the distance xδedemaj

to the boundary of the T2 lesion representing the approximate location of the
edema. The second distance xδedemaj is calculated independently for voxels out-

side xδedema+j and inside xδedema−j the edema. In total we have 269 image fea-

tures x for each voxel when concatenating the vectors of xk, xc, xim, xdiff , and
xδ.

Classifier and spatial regularization We use the image features x defined above
to model the probabilities p(L;x) of class labels L in the BRATS data set, and
the labels of the K normal tissue. For the normal classes (that are not available
from the manual annotation of the challenge data set) we infer the maximum a
posterior estimates of the generative model and use them as label during training.
We choose random forests as our discriminative model as it uses labeled samples
as input and returns class probabilities. Random forests learn many decision
trees from bootstrapped samples of the training data, and at each split in the
tree they only evaluate a random subspaces to find the best split. The split
that separates samples of one class best against the others (with respect to Gini
impurity) is chosen. Trees are grown until all nodes contain sample of a single
class only. In prediction new samples are pushed down all trees of the ensemble
and assigned, for each tree, to the class of the terminal node they end up in.
Votes are averaged over all trees of the ensemble. The resulting normalized votes
approximate the posterior for training samples that are independent of each other
[9]. To minimize correlation in the training data, and also to speed up training,
we draw no more 2000 samples from each of the ≈ 106 voxels in each of the 25
data set. We train an ensemble with 300 randomized decision trees, and choose
a subspace dimensionality of 10. We use the random forest implementation from
Breiman and Cutler. To improve segmentation, we use a Markov Random Field
(MRF) imposing a smoothness constraint on the class labels. We optimize the
function imposing costs when assigning different labels in a 6 neighbourhood on
the cross-validated predictions on the training data.

4 Experiments

We evaluate our model on the BRATS challenge data set of 25 patients with
glioma. The data set comprises T1, T2, FLAIR-, and post-Gadolinium T1 MR
images, all images are skull stripped and co-registered. We segment the volume



into the three healthy and an outlier class using a freely available implemen-
tation of the EM segmentation with bias correction [7, 8]. Outliers are defined
as being more than three standard deviations away from the centroid of any of
the three normal tissue classes. We apply the generative model to the bias field
corrected volumes and initialize intensity parameters with values estimated in
the initial segmentation; we also use the the bias field and intensity corrected
images as input for the discriminative model. More details about these data is
given in another submission to the BRATS challenge that focuses on evaluating
the generative model [10].

Exemplary segmentations that are returned from the present approach are
shown in Figure 1 and quantitative results from a leave-one-out cross-validation
are shown in Table 1. Note that the definition of “core” labels differs between
ground truth (where it also includes the T1 hypo-intense center of the tumor)
and the algorithm tested (where it is only the T1gad hyper-intense area of the
tumor) which results in misleading evaluation scores for the “core” class in low-
grade cases.
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Fig. 1. Representative results of the tumor segmentation. Shown are the
maximum-a-posteriori (MAP) estimates as obtained from the random forest for
normal and tumor classe), the probabilities for core and edema (column 2,3),
the MAP estimates of the two tumor classes before and after spatial smoothing
(column 4,5), and the ground truth (column 6). The examples show that expert
annotation may be disputable in some cases.



ID Dice1 Sens1 Spec1 Dice2 Sens2 Spec2
BRATS HG0027 0.735 0.823 0.995 0.822 0.898 0.997
BRATS HG0026 0.738 0.758 0.997 0.412 0.401 0.998
BRATS HG0025 0.641 0.934 0.992 0.06 0.031 1
BRATS HG0024 0.7 0.834 0.997 0.896 0.982 0.999
BRATS HG0022 0.779 0.806 0.998 0.821 0.729 1
BRATS HG0015 0.8 0.82 0.996 0.894 0.879 0.999
BRATS HG0014 0.327 0.476 0.994 0.761 0.696 0.998
BRATS HG0013 0.7 0.661 1 0.887 0.985 1
BRATS HG0012 0.629 0.704 0.999 0 0 1
BRATS HG0011 0.808 0.763 0.998 0.9 0.889 0.999
BRATS HG0010 0.664 0.788 0.999 0.836 0.879 1
BRATS HG0009 0.833 0.822 0.997 0.749 0.604 1
BRATS HG0008 0.784 0.679 0.999 0.917 0.979 0.998
BRATS HG0007 0.644 0.508 0.999 0.838 0.942 0.999
BRATS HG0006 0.7 0.795 0.994 0.793 0.731 0.999
mean 0.699 0.745 0.997 0.706 0.708 0.999
median 0.7 0.788 0.997 0.822 0.879 0.999

ID Dice1 Sens1 Spec1 Dice2 Sens2 Spec2
BRATS LG0015 0.402 0.751 0.997 0 0 1
BRATS LG0014 0.405 0.605 0.999 0 0 1
BRATS LG0013 0.29 0.492 0.996 0.164 0.089 1
BRATS LG0012 0.424 0.94 0.996 0 0 1
BRATS LG0011 0.3 0.908 0.994 0 0 1
BRATS LG0008 0.419 0.53 0.999 0.521 0.397 1
BRATS LG0006 0.767 0.992 0.998 0.788 0.74 1
BRATS LG0004 0.813 0.898 0.998 0 0 1
BRATS LG0002 0.652 0.767 0.989 0.017 0.009 1
BRATS LG0001 0.454 0.552 0.999 0.843 0.915 0.999
mean 0.493 0.744 0.996 0.233 0.215 1
median 0.422 0.759 0.998 0.009 0.005 1

Table 1. Performance measures as returned by the online challenge tool
(challenge.kitware.com/midas/)indicating Dice score, sensitivity and speci-
ficity (top: high-grade cases; bottom: low-grade cases). Class “1”, with results
shown in the left column, refers to the “edema” labels. Class “2”, with results
shown in the right column, refers to the “tumor core” labels (for both low and
high grade cases). Note that this definition differs somewhat from the labels re-
turned by the algorithm that only indicates T1gad hyper-intense regions as class
2, irrespectively of the grading (low/high) of the disease.
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