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1 Introduction

In this paper, we evaluate a fully automated method for channel-specific tumor
segmentation in multi-dimensional images proposed by us in [1]. The method
represents a tumor appearance model for multi-dimensional sequences that pro-
vides channel-specific segmentation of the tumor. Its generative model shares
information about the spatial location of the lesion among channels while mak-
ing full use of the highly specific multi-modal signal of the healthy tissue classes
for segmenting normal tissues in the brain. In addition to tissue types, the model
includes a latent variable for each voxel encoding the probability of observing
tumor at that voxel, based on the ideas from [2, 3]. This extends the general “EM
segmention” algorithm for situations when specific spatial structures cannot be
described sufficiently through population priors. Different from [1], we now use
a simplified EM algorithm for estimating the tissue state that also allows us to
enforce additional constraints for segmenting lesions that are either hyper- or
hypo-intense with respect to other tissues visible in the same image.

2 Generative Tumor Model

We use a generative modeling approach, in which we first build an explicit sta-
tistical model of image formation and subsequently use this model to derive a
fully automatic segmentation algorithm. We follow the description of the model
from [1].

Normal state We model the normal state of the healthy brain using a spatially
varying probabilistic prior πk for each of the K tissue classes. This population
prior (atlas) is estimated from prior examples and is assumed to be known. At
each voxel i, the atlas defines a multinomial distribution for the tissue label ki:

p(ki = k) = πki. (1)



The normal state ki is shared among all C channels at voxel i. In our experiments
we assume K = 3, representing gray matter (GM), white matter (WM) and
cerebrospinal fluid (CSF).

Tumor state We model the tumor state using a spatially varying “latent” prob-
abilistic atlas α, similar to [2], that is specific to the given image data set or
patient. At each voxel i, this atlas provides a scalar parameter αi that defines
the probability of observing tumor at that voxel. Parameter αi is unknown and
is estimated as part of the segmentation process. We define a latent tumor state
tci ∈ {0, 1} that indicates the presence of tumor in channel c at voxel i and model
it as a Bernoulli random variable with parameter αi. We form a binary tumor
state vector ti = [t1i , . . . , t

C
i ]T indicating the tumor presence for all c observations

at voxel i, with probability

p(ti;αi) =
∏
c

p(tci ;αi) =
∏
c

α
tci
i · (1− αi)

1−tci . (2)

Observation model The image observations yci are generated by Gaussian inten-
sity distributions for each of the K tissue classes and the C channels, with mean
µc
k and variance vck, respectively. In tumor tissue (i.e., if tci = 1) the normal obser-

vations are replaced by intensities from another set of channel-specific Gaussian
distributions with mean µc

T and variance vcT , representing the tumor class. Let-
ting θ denote the set of all mean and variance parameters, and yi = [y1i , . . . , y

C
i ]T

denote the vector of the intensity observations at voxel i, we define the data like-
lihood:

p(yi|ti, ki;θ) =
∏
c

p(yci |tci , ki;θ)

=
∏
c

[
N (yci ; µc

ki
, vcki

)1−t
c
i · N (yci ; µc

T , v
c
T )t

c
i

]
, (3)

where N (· ; µ, v) is the Gaussian distribution with mean µ and variance v.

Joint model Finally, the joint probability of the atlas, the latent tissue class and
the observed variables

p(yi, ti, ki;θ, αi) = p(yi|ti, ki;θ) · p(ti;αi) · p(ki) (4)

is the product of the components defined in Eqs. (1-3).

3 Inference

Maximum Likelihood Parameter Estimation We seek Maximum Likelihood esti-
mates of the model parameters {θ,α}:

〈θ̂, α̂〉 = arg max
〈θ,α〉

p(y1, . . . ,yN ;θ,α) = arg max
〈θ,α〉

N∏
i=1

p(yi;θ,α),



where N is the number of voxels in the volume and

p(yi;θ,α) =
∑
ti

∑
ki

p(yi, ti, ki;θ,α) =
∑
si

p(yi, si;θ,α).

For summing over values of ti and ki in Eq. (4), we follow the same approach
as in [1], but – rather than summing over the two parameters individually – we
now sum over tissue state vector si that is obtained by expanding ti and ki into
one state vector. This state vector s indicates tumor sci = T in all channels with
tci = 1, and normal tissue sci = ki for all other channels. As an example, with
ti = [0, 0, 1, 1] and ki = WM indicating tumor in channels 3 and 4 and a white
matter image intensity in all healthy channels, we obtain a tissue state vector
si = [WM,WM,T, T ]. Letting {θ̃, α̃} denote the current parameter estimates,
we can compute the posterior probability of any of the resulting K ∗ 2C tissue
state vectors si that may characterize the multimodal image intensity pattern
observed in voxel i. Writing out the components of Eq. (4) we obtain for si
(using the corresponding ti(si) and ki(si) for simplicity of the notation):

p(si|yi; θ̃, α̃) ∝ πki
∏
c

[
N (yci ; µ̃c

T , ṽ
c
T )t

c
iα

tci
i · N (yci ; µ̃c

k, ṽ
c
k)1−t

c
i (1− αi)

1−tci

]
(5)

As an additional constraint we only consider state vectors si that are biologically
reasonable. We rule out, for example, state vectors that indicate at the same time
CSF and tumor, or that correspond to observing tumor-specific changes in the
T1gad channel (that is characteristic for the tumor core), while T2 and FLAIR
do not show tumor specific changes in the same location. Choosing appropriate
constraints reduces the total number of states |S| to be summed over in Eq. 5
significantly. Similar to the double EM-type minorization from [1] – that updated
ti and ki iteratively – we arrive at closed-form update expressions that guarantee
increasingly better estimates of the model parameters. The updates are intuitive:
the latent tumor prior α̃i is an average of the corresponding posterior estimated
and the intensity parameters µ̃c

k and ṽck are updated with the weighted statistics
of the data for the healthy tissues and for the tumor class. We iterate the estima-
tion of the parameters {θ̃, α̃} and the computation of the posterior probabilities

p(si|ki,yi; θ̃, α̃) until convergence that is typically reached after 10-15 updates.
During the iterations we enforced that tumor voxels are hyper- or hypo-intense
with respect to the current average µc

k of the white matter tissue (hypo-intense
for T1, hyper-intense for T1gad, T2, FLAIR) by reducing the class weight for
observations that do not comply with this constraint, similar to [4].

Spatial regularization Little spatial context is used in the basic model, as we
assume the tumor state ti in each voxel to be independent from the state of
other voxels Eq. 3). It is only the atlas πk that encourages smooth classification
for the healthy tissue classes by imposing similar priors in neighboring voxels.
To encourage a similar smoothness of the tumor labels, we extend the latent
atlas α to include a Markov Random Field (MRF) prior, relaxing the MRF to



a mean-field approximation with an efficient approximate algorithm. Different
from [1], we now use channel-specific regularization parameters βc that are all
in the range of .3 to 1.

Channel-specific tumor probabilities, and semantic interpretation Once we have
an estimate of the model parameters {θ̂, α̂}, we can evaluate the probability that
tumor is visible in channel c of voxel i by summing over all the configurations ti
for which sci = T or tci = 1, respectively:

p(tci = 1|yi; θ̂, α̂) = p(sci = T |yi; θ̂, α̂) =
∑
si

δ(sci , T ) p(si|yi; θ̂, α̂), (6)

where δ is the Kroneker delta that is 1 for sci = T and 0 otherwise.

We then assign channel c of voxel i to tumor if p(tci = 1|yi; θ̂, α̂) > 0.5.
For a semantic interpretation that is in line with the class definitions of the
segmentation challenge, we label voxels that show tumor specific changes in the
T2 channel as edema, and voxels that show hyper-intense tumor specific changes
as tumor core. All other image voxels are considered to be normal. Moreover, we
remove any isolated regions that is smaller than .5 cm3 in size.

4 Experiments

We evaluate our model on a the BRATS challenge data set of 25 patients with
glioma. The data set comprises T1, T2, FLAIR-, and post-Gadolinium T1 MR
images, all images are skull stripped and co-registered using an affine registra-
tion. We segment the volume into the three healthy and an outlier class using a
freely available implementation of the EM segmentation with bias correction [5,
4]. Outliers are defined as being more than three standard deviations away from
the centroid of any of the three normal tissue classes. We apply our algorithm to
the bias field corrected volumes and initialize intensity parameters with values
estimated in the initial segmentation. We initialize the latent atlas α to 0.7 time
the local prior for the presence of gray or white matter.

Channels-specific segmentations returned by our algorithm are transformed
to Edema and Core classes as detailed above. Exemplary segmentations are
shown in Figure 1 and quantitative results from a leave-one-out cross-validation
are shown in Table 1. Note that the definition of “core” labels differs between
ground truth (where it also includes the T1 hypo-intense center of the tumor) and
the algorithm tested (where it is only the T1gad hyper-intense area of the tumor)
leading to misleading evaluation scores for low-grade cases and, to some degree,
for high-grade core labels. Please note that another submission to the BRATS
challenge [6] deals with further processing the probability maps presented here.
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ID Dice1 Sens1 Spec1 Dice2 Sens2 Spec2
BRATS HG0027 0.633 0.649 0.995 0.728 0.619 0.999
BRATS HG0026 0.681 0.616 0.998 0.443 0.369 0.999
BRATS HG0025 0.643 0.704 0.996 0.154 0.087 1
BRATS HG0024 0.652 0.685 0.998 0.71 0.639 0.999
BRATS HG0022 0.689 0.683 0.998 0.463 0.311 1
BRATS HG0015 0.762 0.699 0.998 0.691 0.534 1
BRATS HG0014 0.217 0.453 0.989 0.457 0.303 1
BRATS HG0013 0.429 0.647 0.999 0.74 0.983 1
BRATS HG0012 0.373 0.58 0.997 0.068 0.043 1
BRATS HG0011 0.606 0.464 0.999 0.57 0.54 0.998
BRATS HG0010 0.381 0.792 0.996 0.724 0.77 1
BRATS HG0009 0.697 0.594 0.997 0.486 0.38 0.997
BRATS HG0008 0.652 0.56 0.996 0.697 0.556 1
BRATS HG0007 0.542 0.492 0.997 0.775 0.727 0.999
BRATS HG0006 0.649 0.621 0.997 0.65 0.505 1
mean 0.574 0.616 0.997 0.557 0.491 0.999
median 0.643 0.621 0.997 0.65 0.534 1

ID Dice1 Sens1 Spec1 Dice2 Sens2 Spec2
BRATS LG0015 0.373 0.523 0.998 0 0 1
BRATS LG0014 0.182 0.335 0.998 0 0 1
BRATS LG0013 0.185 0.324 0.995 0.17 0.099 1
BRATS LG0012 0.42 0.79 0.997 0.005 0.002 1
BRATS LG0011 0.344 0.777 0.996 0.001 0 1
BRATS LG0008 0.471 0.386 1 0.675 0.547 1
BRATS LG0006 0.625 0.809 0.998 0.591 0.507 1
BRATS LG0004 0.75 0.764 0.998 0.011 0.006 1
BRATS LG0002 0.584 0.622 0.991 0.109 0.059 1
BRATS LG0001 0.3 0.495 0.997 0.838 0.777 1
mean 0.423 0.582 0.997 0.24 0.2 1
median 0.396 0.572 0.998 0.06 0.0325 1

Table 1. Performance measures as returned by the online challenge tool
(challenge.kitware.com/midas/), indicating Dice score, sensitivity and speci-
ficity (top: high-grade cases; bottom: low-grade cases). Class “1”, with results
shown in the left column, refers to the “edema” labels. Class “2”, with results
shown in the right column, refers to the “tumor core” labels (for both low and
high grade cases). Note that this definition differs somewhat from the labels re-
turned by the algorithm that only indicates T1gad hyper-intense regions as class
2, irrespectively of the grading (low/high) of the disease.



Fig. 1. Representative results of the channel-wise tumor segmentation. Shown
are the MR images together with the most likely tumor areas (outlined red).
The first four columns show T1, T1gad, T2 and FLAIR MRI, lesions are hyper-
intense with respect to the gray matter for T1gad, T2 and FLAIR, they are
hypo-intense in T1. The last two columns show the labels inferred from the
channel-specific tumor segmentation (column 5), and the ground truth (column
6). The examples show that expert annotation may be disputable in some cases
(e.g., rows 4, 5, 6).
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