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Abstract. In this work, a generative approach for patient-specific seg-
mentation of brain tumors across different MR modalities is presented. It
is based on the latent atlas approach presented in [7, 8]. The individual
segmentation of each scan supports the segmentation of the ensemble by
sharing common information. This common information, in the form of
a spatial probability map of the tumor location is inferred concurrently
with the evolution of the segmentations. The joint segmentation problem
is solved via a statistically driven level-set framework. We illustrate the
method on an example application of multimodal and longitudinal brain
tumor segmentation, reporting promising segmentation results.

1 Introduction

Modeling patient-specific anatomy is essential in longitudinal studies and pathol-
ogy detection. We present a generative approach for joint segmentation of MR
scans of a specific subject, where the latent anatomy, in the form of spatial pa-
rameters is inferred concurrently with the segmentation. The work is based on
the latent atlas approach presented in [7, 8]. While the methodology can be
applied to a variety of applications, here we demonstrate our algorithm on a
problem of multimodal segmentation of brain tumors. Patient-specific datasets
acquired through different modalities at a particular time point are segmented
simultaneously, yet individually, based on the specific parameters of their in-
tensity distributions. The spatial parameters that are shared among the scans
facilitate the segmentation of the group.

The method we propose is almost fully automatic. No prior knowledge or
external information is required but a couple of mouse clicks at approximately
the center and the boundary of a single tumor slice used to generate a sphere
that initializes the segmentations. All model parameters, spatial and intensity,
are inferred from the patient scans alone. The output of the algorithm consist of



individual segmentations for each modality. This is in contrast to many discrim-
inative methods, e.g., [9], that use multimodal datasets for multivariate feature
extraction, assuming spatial coherence of the tumor outlines in different image
modalities. Here we relax this assumption and search for systematic, structural
differences of the visible tumor volume acquired by different imaging protocols.

2 Problem definition and probabilistic model

This section summarizes the formulation of [6–8] for the joint segmentation of N
aligned MR images . The input consists of N scans of a specific patient acquired
via different imaging protocols. Our objective is to extract a brain tumor that
may appear slightly differently across the images. Let In:Ω → R+, be a gray
level image with V voxels, defined on Ω ⊂ R3 and let Γn:Ω → {0, 1} be the
unknown segmentation of the image In, n = 1, . . . , N . We assume that each
segmentation Γn is generated iid from a probability distribution p(Γ ; θΓ ) where
θΓ is the set of the unknown spatial parameters. We also assume that Γn gener-
ates the observed image In, independently of all other image-segmentation pairs,
with probability p(In|Γn; θI,n) where θI,n are the parameters corresponding to
image In. Since the images are acquired by different imaging protocols we assign
a different set of intensity parameters to each of them. Our goal is to estimate
the segmentations Γ . This, however, cannot be accomplished in a straightfor-
ward manner since the model parameters are also unknown. We therefore jointly
optimize Γ and Θ:

{Θ̂, Γ̂} = arg max
{Θ,Γ}

log p(I1 . . . IN , Γ1 . . . ΓN ;Θ) (1)

= arg max
{Θ,Γ}

N∑
n=1

[log p(In| Γn; θI,n) + log p(Γn; θΓ )] . (2)

We alternate between estimating the maximum a posteriori (MAP) segmenta-
tions and updating the model parameters. For a given setting of the model pa-
rameters Θ̂, Eq. (2) implies that the segmentations can be estimated by solving
N separate MAP problems:

Γ̂n = arg max
Γn

[log p(In| Γn; θI,n) + log p(Γn; θΓ )] . (3)

We then fix Γ̂ and estimate the model parameters Θ = {θΓ , θI,1, . . . θI,N} by
solving two ML problems:

θ̂I,n = arg max
θI,n

log p(In; Γn, θI,n), (4)

θ̂Γ = arg max
θΓ

N∑
n=1

log p(Γn; θΓ ). (5)



3 Level-set framework

Now we draw the connection between the probabilistic model presented above
and a level-set framework for segmentation. Let φn:Ω → R be the level-set
function associated with image In. The zero level Cn = {x ∈ Ω| φn(x) = 0}
defines the interface that partitions the image space of In into two disjoint regions
ω and Ω\ω. Similar to [4, 5] we define the level-set function φn using the log-odds
formulation instead of the conventional signed distance function:

φn(x) , ε logit(p) = ε log
p(x ∈ w)

1− p(x ∈ ω)
= ε log

p(x ∈ ω)

p(x ∈ Ω \ ω)
, (6)

where p(x ∈ ω) can be viewed as the probability that the voxel in location x
belongs to the foreground region. The constant ε determines the scaling of the
level-set function φn with respect to the ratio of the probabilities. The inverse
of the logit function for ε = 1 is the logistic function:

Hε(φn) =
1

2

(
1 + tanh

(
φn
2ε

))
=

1

1 + e−φn/ε
. (7)

Note, that Hε(φn) is similar, though not identical, to the regularized Heaviside
function introduced by Chan and Vese [1]. We use this form of Heaviside function
and its derivative with respect to φ in the proposed level-set formulation. To
simplify the notation, we omit the subscript ε in the rest of the paper.

Cost functional for segmentation The joint estimation problem of the hidden
variables Γ and the unknown model parameters {θΓ , θnI } can be solved as an
energy minimization problem. As in [6–8], we establish the correspondence be-
tween the log probability and the level-set energy terms. We also look for the
fuzzy labeling functions H(φn) rather than the hard segmentations Γn.

Let us consider first the prior probability p(Γn; θΓ ) in Eq. (2) and its corre-
sponding energy terms. Specifically, we construct an MRF prior for segmenta-
tions:

log p(Γn; θΓ ) =

V∑
v=1

[Γ vn log(θvΓ ) + (1− Γ vn ) log(1− θvΓ )] (8)

−
V∑
v=1

f(Γ vn , Γ
N (v)
n )− logZ(θΓ ),

where Z(θΓ ) is the partition function and N (v) is the set of the closest neighbors
of voxel v. We define the spatial energy term ES based on the singleton term in
Eq. (8). Using the level-set formulation we obtain:

ES(φn, Θ) = −
∫
Ω

[log θΓ (x)H(φn(x)) + log(1− θΓ (x)) (1−H(φn(x)))] dx.

(9)



The dynamically evolving latent atlas θΓ is obtained by optimizing the sum of
the energy terms that depend on θΓ :

θ̂Γ (x) =
1

N

N∑
n=1

H̃(φn(x)). (10)

The standard smoothness term used in level-set framework:

ELEN(φn) =

∫
Ω

|∇H(φn(x))|dx, (11)

can be obtained as an approximation of the pairwise term in Eq. (8).

The energy term EI(φn, θ
n
I ) corresponds to the image likelihood term in

Eq. (3):

EI(φn, Θ) = −
∫
Ω

[
log pin(In; θinI,n)H(φn(x)) (12)

+ log pout(In; θoutI,n) (1−H(φn(x)))
]
dx.

We assume that the intensities of the structure of interest are drawn from a
normal distribution such that the pair of scalars θinI,n = {µin

n , σ
in
n } are the mean

and standard deviation of the foreground intensities. We use a local-intensity
model for the background intensity distributions in the spirit of [3], where
θoutI,n(x) = {µout

n (x), σout
n (x)} are the local mean and standard deviation of a

small neighbourhood of x that exclusively belongs to the background.

We construct the cost functional for φ1 . . . φN and the mode parameters by
combing Eq. (12), (11) and (9):

E(φ1 . . . φN , Θ) = γELEN + βEI + αES (13)

where α, β and γ are positive scalars.

Gradient descent and parameter estimation. We optimize Eq. (13) by a
set of alternating steps. For fixed model parameters the update of each level-set
function φn in each iteration is determined by the following gradient descent
equation:

∂φn
∂t

= δ(φn)

{
γ div (

∇φn
|∇φn|

) + β [log pin(In(x); θI,n)− log pout(In(x); θI,n)]

+ α [log θΓ − log(1− θΓ )]} , (14)

where δ(φn) is the derivative of H(φn) with respect to φn. For fixed segmenta-
tions φn, the model parameters are recovered by differentiating the cost func-
tional in Eq. (13) with respect to each parameter.



4 Experiments

We evaluate our model on the BRATS challenge data set of 25 patients with
glioma. The data set comprises T1, T2, FLAIR-, and post-Gadolinium T1 MR
images, all images are skull stripped and co-registered. The tumor is initialized
through a sphere of 1-3 cm diameter, that is placed in the center of the tumor.

Exemplary segmentations that are returned from the present approach are
shown in Figure 1 and quantitative results from a leave-one-out cross-validation
are shown in Table 3. Note that the definition of “core” labels differs between
ground truth (where it also includes the T1 hypo-intense center of the tumor)
and the algorithm tested (where it is only the T1gad hyper-intense area of the
tumor) which results in misleading evaluation scores for the “core” class in low-
grade cases.

5 Discussion and future directions

We presented a statistically driven level-set approach for joint segmentation of
subject-specific MR scans. The latent patient anatomy, which is represented
by a set of spatial parameters is inferred from the data simultaneously with
the segmentation through an alternating minimization procedure. Segmentation
of each of the channels or modalities is therefore supported by the common
information shared by the group. Promising segmentation results on scans of 25
patients with Glioma were demonstrated.
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Fig. 1. Representative results of the tumor segmentation. Shown are the seg-
mentations for the four different modalities (columns 1-4), the labels inferred
from the channel-wise segmentation (column 5), and the ground truth (column
6). The examples show that expert annotation may be disputable in some cases.



ID Dice1 Sens1 Spec1 Dice2 Sens2 Spec2
BRATS HG0027 0.65 0.752 0.993 0.813 0.812 0.998
BRATS HG0026 0.678 0.602 0.998 0.413 0.293 0.999
BRATS HG0025 0.59 0.933 0.991 0.083 0.043 1
BRATS HG0024 0.659 0.873 0.996 0.825 0.779 1
BRATS HG0022 0.699 0.82 0.997 0.608 0.498 0.999
BRATS HG0015 0.756 0.908 0.991 0.831 0.731 1
BRATS HG0014 0.27 0.665 0.987 0.59 0.45 0.999
BRATS HG0013 0.684 0.713 1 0.894 0.996 1
BRATS HG0012 0.637 0.709 0.999 0.098 0.077 1
BRATS HG0011 0.798 0.742 0.998 0.882 0.971 0.998
BRATS HG0010 0.097 0.145 0.997 0.276 0.945 0.996
BRATS HG0009 0.795 0.8 0.995 0.548 0.377 1
BRATS HG0008 0.734 0.771 0.992 0.841 0.885 0.998
BRATS HG0007 0.407 0.361 0.996 0.278 0.298 0.996
BRATS HG0006 0.648 0.843 0.991 0.817 0.716 1
mean 0.607 0.709 0.995 0.586 0.591 0.999
median 0.659 0.752 0.996 0.608 0.716 0.999

ID Dice1 Sens1 Spec1 Dice2 Sens2 Spec2
BRATS LG0015 0.37 0.712 0.997 0.116 0.066 1
BRATS LG0014 0 0 1 0 0 1
BRATS LG0013 0.326 0.631 0.995 0.452 0.293 1
BRATS LG0012 0.563 0.721 0.999 0.822 0.762 1
BRATS LG0011 0.262 0.958 0.993 0 0 1
BRATS LG0008 0 0 1 0 0 1
BRATS LG0006 0.556 0.985 0.996 0.73 0.832 1
BRATS LG0004 0.513 0.492 0.997 0.022 0.072 0.997
BRATS LG0002 0.636 0.734 0.989 0.242 0.178 0.997
BRATS LG0001 0.345 0.648 0.997 0.843 0.774 1
mean 0.357 0.588 0.996 0.323 0.298 0.999
median 0.358 0.68 0.997 0.179 0.125 1

Table 1. Real data. Performance measures as returned by the online chal-
lenge tool (challenge.kitware.com/midas/)indicating Dice score, sensitivity
and specificity (top: high-grade cases; bottom: low-grade cases). Class “1”, with
results shown in the left column, refers to the “edema” labels. Class “2”, with
results shown in the right column, refers to the “tumor core” labels (for both
low and high grade cases). Note that this definition differs somewhat from the
labels returned by the algorithm that only indicates T1gad hyper-intense regions
as class 2, irrespectively of the grading (low/high) of the disease.



ID Dice1 Sens1 Spec1 Dice2 Sens2 Spec2
SimBRATS HG0025 0.023 0.105 0.996 0.631 0.593 0.998
SimBRATS HG0024 0.217 0.993 0.999 0.968 0.948 1
SimBRATS HG0023 0.007 0.078 0.997 0.454 0.419 0.997
SimBRATS HG0022 0.689 0.682 0.996 0.002 0.001 0.999
SimBRATS HG0021 0.312 0.214 0.998 0.02 0.011 1
SimBRATS HG0020 0.138 0.127 0.996 0.315 0.249 0.998
SimBRATS HG0019 0.45 0.349 0.998 0 0 1
SimBRATS HG0018 0.01 0.047 0.996 0.579 0.552 0.997
SimBRATS HG0017 0.147 0.179 0.998 0.499 0.348 1
SimBRATS HG0016 0.033 0.091 0.995 0.681 0.667 0.997
SimBRATS HG0015 0.36 0.289 0.998 0.234 0.186 0.998
SimBRATS HG0014 0.362 0.3 0.998 0.451 0.406 0.998
SimBRATS HG0013 0.623 0.564 0.996 0.004 0.002 0.999
SimBRATS HG0012 0.44 0.36 0.999 0.035 0.022 1
SimBRATS HG0011 0.453 0.518 0.997 0.366 0.235 1
SimBRATS HG0010 0.528 0.867 0.999 0.974 0.978 1
SimBRATS HG0009 0.762 0.788 1 0.958 0.977 1
SimBRATS HG0008 0.381 0.352 0.996 0.454 0.386 0.999
SimBRATS HG0007 0.635 0.689 0.995 0.559 0.75 0.997
SimBRATS HG0006 0.011 0.037 0.998 0.373 0.274 0.999
SimBRATS HG0005 0.63 0.615 0.996 0.019 0.015 0.999
SimBRATS HG0004 0.33 0.311 0.996 0.485 0.475 0.998
SimBRATS HG0003 0.63 0.593 0.998 0.317 0.314 0.999
SimBRATS HG0002 0.405 0.819 0.999 0.924 0.875 1
SimBRATS HG0001 0.592 0.856 0.999 0.971 0.982 1
mean 0.367 0.433 0.997 0.451 0.427 0.999
median 0.381 0.352 0.998 0.454 0.386 0.999

Table 2. Simulated data (high grade). Performance measures as returned
by the online challenge tool (challenge.kitware.com/midas/)indicating Dice
score, sensitivity and specificity (top: high-grade cases; bottom: low-grade cases).
Class “1”, with results shown in the left column, refers to the “edema” labels.
Class “2”, with results shown in the right column, refers to the “tumor core”
labels (for both low and high grade cases). Note that this definition differs some-
what from the labels returned by the algorithm that only indicates T1gad hyper-
intense regions as class 2, irrespectively of the grading (low/high) of the disease.



ID Dice1 Sens1 Spec1 Dice2 Sens2 Spec2
SimBRATS LG0025 0.042 0.528 0.993 0.05 0.026 1
SimBRATS LG0024 0.404 0.997 0.993 0.137 0.074 1
SimBRATS LG0023 0.662 0.74 0.997 0.008 0.004 1
SimBRATS LG0022 0.404 0.551 0.997 0.007 0.004 1
SimBRATS LG0021 0 0 1 0 0 1
SimBRATS LG0020 0.367 0.702 0.997 0.023 0.012 1
SimBRATS LG0019 0.378 0.367 0.998 0.015 0.008 1
SimBRATS LG0018 0 0 1 0 0 1
SimBRATS LG0017 0.632 0.678 0.998 0 0 1
SimBRATS LG0016 0.699 0.858 0.993 0.08 0.045 1
SimBRATS LG0015 0.46 0.578 0.997 0.01 0.005 1
SimBRATS LG0014 0.02 0.416 0.996 0.025 0.013 1
SimBRATS LG0013 0.402 0.447 0.997 0.014 0.007 1
SimBRATS LG0012 0 0 1 0 0 1
SimBRATS LG0011 0 0 1 0 0 1
SimBRATS LG0010 0.078 0.694 0.991 0.21 0.117 1
SimBRATS LG0009 0.394 0.507 0.997 0.035 0.018 1
SimBRATS LG0008 0.051 0.998 0.994 0.13 0.07 1
SimBRATS LG0007 0 0 1 0 0 1
SimBRATS LG0006 0.395 0.857 0.995 0.054 0.028 1
SimBRATS LG0005 0.483 0.994 0.993 0.089 0.047 1
SimBRATS LG0004 0.317 0.316 0.998 0.002 0.001 1
SimBRATS LG0003 0.359 0.546 0.997 0.007 0.004 1
SimBRATS LG0002 0 0 1 0 0 1
SimBRATS LG0001 0.489 0.39 0.998 0.001 0.001 1
mean 0.281 0.487 0.997 0.0359 0.0194 1
median 0.367 0.528 0.997 0.01 0.005 1

Table 3. Simulated data (low grade). Performance measures as returned
by the online challenge tool (challenge.kitware.com/midas/)indicating Dice
score, sensitivity and specificity (top: high-grade cases; bottom: low-grade cases).
Class “1”, with results shown in the left column, refers to the “edema” labels.
Class “2”, with results shown in the right column, refers to the “tumor core”
labels (for both low and high grade cases). Note that this definition differs some-
what from the labels returned by the algorithm that only indicates T1gad hyper-
intense regions as class 2, irrespectively of the grading (low/high) of the disease.
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