Glioblastoma growth modeling for radiotherapy
target delineation

Jan Unkelbach', Bjoern H. Menze?, Ali R. Motamedi', Florian Dittmann®,
Ender Konukoglu?, Nicholas Ayache?, and Helen A. Shih!

! Massachusetts General Hospital, 30 Fruit Street, Boston, MA 02114, USA
2 Computer Vision Laboratory, ETH Ziirich, Switzerland
3 Microsoft Research, Cambridge, UK
4 Asclepios Project, INRIA Sophia Antipolis, France

Abstract. Radiotherapy treatment planning requires a localization of
the tumor within the patient. This is challenging to accomplish for micro-
scopic infiltrative spread of disease that is not visible on current imaging
modalities. Prime examples for infiltrative tumors are gliomas. With the
help of mathematical models, common growth characteristics of gliomas,
which are known from histopathological studies, can be incorporated in
radiotherapy target delineation. This requires an imaging based personal-
ization of the model to the individual patient. We demonstrate use cases
of the Fisher-Kolmogorov glioma growth model in radiotherapy planning
of a clinical case. We further analyze the crucial input parameters to the
model, in particular, the need for reliable segmentation of anatomical
boundaries such as the falx cerebri and the tentorium cerebelli.
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1 Introduction

Glioma differ from many solid tumors in the sense that they grow infiltratively.
Instead of forming a solid tumor mass with a defined boundary, glioma cells in-
filtrate the adjacent brain parenchyma. It is well known that tumor cells can be
found several centimeters beyond the tumor mass that is visible MRI. Currently,
radiotherapy planning is mostly based on the enhancing tumor mass visible on
post contrast T1 weighted imaging, as well as the peritumoral edema region
visible on T2 weighted images. To account for the infiltrative growth, a 2-3 cen-
timeter wide margin is added to the visible tumor mass to form the clinical
target volume (CTV), which is irradiated to a homogeneous dose of 60 Gray.
The current treatment planning procedure can potentially be improved by ac-
counting for anisotropic growth patterns of gliomas that are currently not or not
consistently incorporated in target delineation. The spatial growth of glioma is
influenced by three factors:

1. Anatomical boundaries: The dura, including its extensions falx cerebri and
tentorium ceribelli, represents a boundary for migrating tumor cells. Also,
except for rare cases of CSF seeding, gliomas do not infiltrate the ventricles.
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2. Tumor cells infiltrate gray matter much less than white matter.
3. Tumor cells seem to migrate primarily along white matter fiber tracts.

These macroscopic growth characteristics are partly known from histopatholog-
ical analysis after autopsy or resection. In parts, these growth patterns are also
observed from MR imaging. A comprehensive review can be found in [1].

Incorporating these growth patterns in radiotherapy target volume delin-
eation requires a combination of both mathematical tumor growth modeling
and analysis of clinical imaging data. In this work, we use a phenomenological
model of tumor growth based on the Fisher-Kolmogorov equation [2-4]. The
patient’s MRI imaging data is used to personalize the model for application in
treatment planning [5-8]. The tumor growth model yields a spatial distribution
of infiltrating tumor cells in the brain. This can be used in radiotherapy plan-
ning by defining the target volume as an isoline of the tumor cell density 9,
10]. For an application of the model in clinical practice, additional challenges
need to be addressed. This includes a characterization of the situations in which
the model based target volumes lead to differences compared to manually drawn
target volumes. In addition, a sensitivity analysis is needed. The crucial inputs
to the model need to be understood and the implications of uncertainty in model
inputs and parameters need to be investigated.

In section 2, we briefly summarize the underlying tumor growth model. In
section 3 we discuss brain segmentation which turns out to be the most crucial
model input. In section 4 we present results and illustrate the use of the model
for target delineation. The impact of model parameter choices is discussed.

2 Tumor growth model

2.1 Parameterization of tumor infiltration

It is assumed that two processes describe tumor growth: local proliferation of
tumor cells and diffusion of cells into neighboring brain tissue. Mathematically,
this is formalized via the Fisher-Kolmogorov equation, a partial differential equa-
tion of reaction-diffusion type for the tumor cell density ¢(r,t) as a function of
location r and time t¢:

ac(r,t) =V - (D(r)Ve(r,t)) + pe(r,t) (1 — c(r, t)) (1)
where p is the proliferation rate which is assumed to be spatially constant, and
D(r) is the 3 x 3 diffusion tensor which depends on location r. The first term
on the right hand side of equation 1 is the diffusion term that models tumor
cell migration into neighboring tissue. The second term is a logistic growth term
that describes tumor cell proliferation. In this paper, the diffusion tensor is
constructed as

D, -I r € white matter
D, -1 7 € gray matter

D(r) = { (2)
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where I is the 3 x 3 identity matrix, and D, and D,, are scaling coeflicients for
gray and white matter, respectively. At the boundary of brain tissue consisting
of white and gray matter we impose no-flux boundary conditions. In summary,
the three growth characteristics described in the introduction are reflected in
the model as follows:

1. Anatomical boundaries: Are handled through no-flux boundary condi-
tions at the boundary to CSF. It is assumed that infiltrating tumor cells are
restricted to white and gray matter and do not infiltrate the ventricles or
penetrate the dura.

2. Reduced gray matter infiltration: Is described via a larger diffusion
coefficient in white matter versus gray matter (D,,/Dg > 1).

3. Preferential spread along white matter fiber tracts: Can be described
via an anisotropic diffusion tensor D. Within white matter, the identity ma-
trix I in equation 2 is replaced by a tensor proportional to the water diffusion
tensor that is reconstructed from diffusion tensor MR imaging (DTT) [11, 12].
This is however not considered in this paper.

In this paper, we utilize the model to infer the tumor cell density at the time of
diagnostic imaging. A naive integration of the model equation 1 is problematic
because the initial condition that corresponds to the current tumor appearance
on MRI is unknown. We therefore apply a method previously published in [9]
that is based on the traveling wave approximation®.

2.2 Image based model personalization

In order to apply this model for target delineation, the model equation (1) has to
be personalized to the individual patient. This process involves two steps: first,
a segmentation of the brain, and second, the choice of model parameters.

Segmentation A segmentation of the brain into the three classes white matter,
gray matter, and cerebrospinal fluid (CSF) 6 is required in order to solve the
model equation based on the individual patient geometry. The brain segmenta-
tion is obtained from the structural MR images, including T1, T2, FLAIR and
T1 post contrast. Figure 3 shows an example patient discussed in this paper.
Figure 3a shows the coronal T1 weighted post contrast image, revealing a con-
trast enhancing glioblastoma in the right parietal lobe next to the falx. Also the
tentorium cerebelli, representing a boundary for migrating tumor cells, is clearly
visible. Figure 3b shows the peritumoral edema visible in the axial FLAIR image.
The brain segmentation is shown in 3c. The segmentation methods are discussed
in more detail in section 3.

5 For details see [9]. For the results shown in this paper, it is assumed that the bound-
ary of the enhancing tumor mass on the T1 post contrast image corresponds to a
tumor cell density of 70%.

5 Here, we refer to all tissue that is neither white nor gray matter as CSF, ever though
more classes for non-brain tissue can be used in the segmentation.
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Model parameters In addition, model parameters need to be determined. For
this work, the main model parameter is the ratio D,,/Dy of the diffusion coeffi-
cients in white and gray matter”. Ideally, model parameters are also estimated for
an individual patient. For the parameter D,,/D, this is difficult to accomplish.
Hints on reduced gray matter infiltration mainly comes from histopathological
analysis [1], which is not available for an individual patient. To a limited de-
gree, the shape of the edematous region visible on the FLAIR image contains
information about the microscopic spread of tumor cells. However, the edema
is only a surrogate for infiltrative disease. In many cases, the edema region is
mostly confined to white matter. It is, however, unclear to what extent this
can be seen as evidence for reduced tumor cell infiltration in gray matter, as
this may be due to other physiological reasons [1]. In summary, it is commonly
believed that D,,/D, > 1, but quantification remains difficult. It is therefore
important to discuss the implications of parameter uncertainty for radiotherapy
target delineation (as addressed in section 4).

(a) (b) (c)

Fig.1. (a) EM based brain segmentation into white matter (light gray), gray matter
(dark gray), and CSF (black). (b) Segmentation of the cerebral hemispheres and the
cerebellum. (c) final segmentation after using the hemisphere segmentation in (b) to
remove the cerebellum and separate the hemispheres.

3 Brain segmentation

Modeling the spatial growth of the tumor requires a segmentation of gray mat-
ter, white matter, CSF, and non-brain tissue. The normal brain segmentation
is primarily based on an Expectation-Maximization (EM) algorithm [13]. The
basic component of an EM brain segmentation algorithm can be thought of as

" The proliferation rate p influences the velocity of tumor growth and how fast the cell
density drops with distance from the core [8,9]. It has however minimal influence on
the shape of the tumor, i.e. the spatial shape of the isolines of the tumor cell density
(which is the only relevant property in this work).
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a gaussian mixture model of the image data. It is assumed that each of white
matter, gray matter, and CSF has a characteristic mean image intensity. The ac-
tual pixel intensities in the image are assumed to be gaussian distributed around
the mean. For segmentation, the class mean values and the class affiliations for
every pixel are estimated by maximizing the data likelihood using EM. To fa-
vor smooth segmentation boundaries, the basic gaussian mixture model can be
augmented by a markov random field regularization term. Here, we adapt out
previously published EM based segmentation algorithm, which simultaneously
estimates the normal brain segmentation as well as the tumor segmentation on
the available sequences [13].

The EM based segmentation algorithm is almost entirely based on gray value
information in the image and does not incorporate anatomical information. It
yields adequate results for the discrimination of white matter and gray matter.
However, it often fails to reliably segment certain anatomical boundaries. This
applies in particular to the tentorium cerebelli, an extension of the dura that
separates the cerebellum from the cerebral hemispheres. The membrane is thin
and consists of only one or two image pixels. In addition, the EM based seg-
mentation may insufficiently separate the cerebral hemispheres through a layer
of CSF. This may in particular occur if a tumor mass close to the falx pushes
against the membrane. This is illustrated in figure 1, which shows results of the
brain segmentation on the coronal slice shown in figure 3a. Figure la shows the
EM based segmentation. Typically, gray matter and white matter are sufficiently
differentiated. However, the algorithm fails to separate the two hemispheres near
the tumor mass, and fails to identify the tentorium cerebelli. For a reliable ap-
plication of the tumor growth model for target delineation, the result of the EM
based segmentation has to be enhanced via anatomical information.

Here, we adapt the adaptive disconnection algorithm published by Zhao [14],
a method to segment the cerebellum as well as the two cerebral hemispheres.
A result of the adaptive disconnection algorithm is shown in figure 1b. This
anatomical information is used to amend the EM based segmentation. First, the
cerebellum is removed. This is motivated by the fact that supratentorial gliomas
almost never infiltrate the cerebellum. In addition, a two pixel thick layer in
between the two hemispheres is identified. These pixels are marked as CSF in
the final brain segmentation if those pixels were gray matter in the original EM
based segmentation. White matter pixels in the EM segmentation are unchanged
in order to leave the corpus callosum in tact, which connects the two hemispheres
via white matter fiber tracts. The corrected segmentation is shown in figure lc.

4 Model based target delineation

4.1 Spatial distribution of tumor cells

Figure 2 shows the simulated tumor cell density for three different values of
the parameter D,,/Dy on the axial slice shown in figure 3b. For D,,/D, =1
(figure 2a), the anisotropy in tumor growth is only dependent on anatomical
boundaries. In the example shown here, the tumor growth model can be used
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(a) Dw/Dy =1 (b) Dw/D, = 10 (¢) Dw /Dy = 100

Fig. 2. Simulated tumor cell density on a logarithmic scale for three different values of
the parameter D.,/Dy.

to consistently model the complex anatomical conditions created by the falx
(representing a boundary) and the corpus callosum (representing a route for
tumor cells to spread to the contralateral hemisphere). This is difficult to take
into account for in manual target delineation. For D,,/Dy = 100 (figure 2c), the
tumor cell density follows closely the white matter structure, which can be seen
from the comparison to the segmentation in figure 3c. For D,,/D, = 10 (figure
2b) an intermediate result is obtained.

4.2 Target volume definition

For radiotherapy planning, the tumor growth model is used to define the target
volume as an isoline of the tumor cell density. This is illustrated in figures 3a and
3b. Shown are the model derived target volumes for the tumor cell densities in
figure 2. The contours correspond to the same isoline of the tumor cell density.
This isoline was chosen based on the tumor cell density for D,,/D, = 1 such that
the size of the model derived target volume matches the size of the manually
drawn target volume that was used in the clinically applied treatment plan.

It is apparent that the target volumes for different values of the parameter
D, /D, are not substantially different, even though the simulated tumor cell den-
sities in figure 2 appear very distinct. The reason for that is the limited thickness
of the cortex, i.e. gray matter represents a layer on top of the white matter struc-
ture that is only a few millimeters thick. Therefore, reduced infiltration of gray
matter has limited influence in the global shape of the target volume. It mainly
leads to local changes around the sulci. For large D,,/D, values, a thin layer of
gray matter surrounding the sulci is excluded from the target volume. However,
for this patient, this has little impact on radiotherapy planning, because such
small volumes cannot be spared from with available irradiation techniques.

Reduced gray matter infiltration may lead to more substantial changes in the
target volumes near large accumulations of gray matter. This is, for example, the
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case for tumors located closer to the lateral sulcus (Sylvian fissure). In that case,
large areas of gray matter are excluded from the target volume for D,,/D, = 100
(results not shown).

(b) (c)

Fig. 3. Radiographic appearance of a glioblastoma: (a) coronal T1 weighted post con-
trast image, (b) axial FLAIR image. The three contours show the model derived tar-
get volumes discussed in section 4 (red, D.,/Dy = 1; yellow, D.,,/D, = 10; green,
D., /D4 = 100). Figure (c) shows the brain segmentation into CSF, gray matter, white
matter, edema, and enhancing core (from black to white).

5 Conclusion

Gliomas show complex spatial growth patterns, which are influenced by anatom-
ical boundaries and the distribution of white and gray matter. These growth
characteristics can be formalized using a reaction-diffusion equation. A brain
segmentation based on MRI images is used to personalize the tumor growth
model. In our work, we aim at bringing this tumor growth model to an appli-
cation in radiotherapy target delineation. In the first stage, the model can be
used to consistently incorporate anatomical boundaries into target delineation.
This is in particular useful for tumors located close to the falx and the corpus
callosum. This approach only requires a reliable segmentation of the brain. In
this paper, this has been achieved via a hybrid approach where an EM based
brain segmentation is enhanced by a segmentation of the cerebral hemisphere
and the cerebellum. In the next stage, reduced gray matter infiltration can be
incorporated. For most parts of the target volume, this has little impact on
radiotherapy planning because the cortical thickness is only a few millimeters.
However, in regions of major sulci with large accumulations of gray matter, the
model can suggest regions where the target volume can be trimmed.



Jan Unkelbach

References

1.

10.

11.

12.

13.

14.

S. W. Coons. Anatomy and growth patters of diffuse gliomas. In M. S. Berger
and C. B. Wilson, editors, The gliomas, pages pp 210-225, Philadelphia, PA, USA,
1999. W.B. Saunders Company.

Murray J.D. Mathematical Biology 1I: Spatial Models and Biomedical Applications.
Springer, 2002.

. H. L. P. Harpold, E. C. Alvord, and K.R. Swanson. The evolution of mathemati-

cal modeling of glioma proliferation and invasion. J. Neuropathology Exp Neurol,
66(1):1-9, 2007.

E. Mandonnet, J. Pallud, O. Clatz, L. Taillandier, E. Konukoglu, H. Duffau, and
L. Capelle. Computational modeling of the WHO grade II glioma dynamics: prin-
ciples and applications to management paradigm. Neurosurg Rev, 31(3):263-269,
Jul 2008.

E.D. Angelini, O. Clatz, E. Mandonnet, E. Konukoglu, L. Capelle, and H. Duffau.
Glioma dynamics and computational models: a review of segmentation, registra-
tion, and in silico growth algorithms and their clinical applications. Current Medical
Imaging Reviews, 3(4):262-276, 2007.

N. C. Atuegwu, J. C. Gore, and T. E. Yankeelov. The integration of quantitative
multi-modality imaging data into mathematical models of tumors. Phys Med Biol,
55(9):2429-2449, May 2010.

Bjoern H. Menze, Koen Van Leemput, Antti Honkela, Ender Konukoglu, Marc-
Andr Weber, Nicholas Ayache, and Polina Golland. A generative approach for
image-based modeling of tumor growth. Inf Process Med Imaging, 22:735-T47,
2011.

. Ender Konukoglu, Olivier Clatz, Bjoern H. Menze, Bram Stieltjes, Marc-Andr

Weber, Emmanuel Mandonnet, Herve Delingette, and Nicholas Ayache. Image
guided personalization of reaction-diffusion type tumor growth models using mod-
ified anisotropic eikonal equations. IEEE Trans. Med. Imaging, 29(1):77-95, 2010.
Ender Konukoglu, Olivier Clatz, Pierre-Yves Bondiau, Herve Delingette, and
Nicholas Ayache. Extrapolating glioma invasion margin in brain magnetic res-
onance images: Suggesting new irradiation margins. Medical Image Analysis,
14:111-125, 2010.

D. Cobzas, P. Mosayebi, A. Murtha, and M. Jagersand. Tumor invasion margin
on a riemannian space of brain fibers. In LNCS 5762 Proc. MICCAI Part 2, pages
pp 531-39, Heidelberg, Germany, 2009. Springer.

O. Clatz, M. Sermesant, P. Y. Bondiau, H. Delingette, S. K. Warfield, G. Ma-
landain, and N. Ayache. Realistic simulation of the 3-D growth of brain tumors in
MR images coupling diffusion with biomechanical deformation. IEEE Trans Med
Imaging, 24(10):1334-1346, Oct 2005.

Sad Jbabdi, Emmanuel Mandonnet, Hugues Duffau, Laurent Capelle, Kristin Rae
Swanson, Mlanie Plgrini-Issac, Rmy Guillevin, and Habib Benali. Simulation of
anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magnetic
Resonance in Medicine, 54(3):616-624, 2005.

B. Menze, K. Van Leemput, D. Lashkari, M. Weber, N. Ayache, and P. Golland.
A generative model for brain tumor segmentation in multi-modal images. In Proc
MICCAI Heidelberg, 2010. Springer.

Lu Zhao, Ulla Ruotsalainen, Jussi Hirvonen, Jarmo Hietala, and Jussi Tohka. Au-
tomatic cerebral and cerebellar hemisphere segmentation in 3d mri: Adaptive dis-
connection algorithm. Medical Image Analysis, 14(3):360-372, 2010.



