
1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Fall Semester, 1996

Lecture Notes { Sept. 5, 1996

Introduction and Scheme Basics

In today's lecture, we will do three things:

� Administrivia

� Overview of the course

� LISP/Scheme

Administrivia

The General Information handout contains most of the information you need to know about how

the course is run. Please note that the course secretary's o�ce is NE43-711. This is where you

should go if you need to switch section assignments, and where you should turn in your forms for

assigning recitations, if you should choose to do so after class (though we would REALLY prefer

them at the end of class today).

There is a 6.001 Web site, which can be accessed at:

http://www-eecs.mit.edu/class-materials.html

Note that the Instrument Desk is available for the distribution of course notes only between the

hours of 1:00pm and 5:00pm, Mondays to Fridays, and between 6:45pm and 8:45pm, Mondays to

Fridays.

Overview

Computer science is not really about computers, but rather is primarily focused on the concept of

processes, and on ways to describe them.

Processes deal with Imperative or \How to" knowledge, as opposed to Declarative, or \What is"

knowledge.

In talking about \how to" knowledge, we will distinguish between a process, which is actual mecha-

nism by which a computation is executed and a procedure, which is a means of describing a process.

Our need to describe processes leads to a need for a language in which to execute that description,

with its own vocabulary and rules of syntax and semantics. In this course we will be using a dialect

of LISP, called Scheme, for that purpose.

Once we have developed this language for describing processes, we will want to use it to describe

large and complex processes. To do this, we will need some solid engineering tools for controlling

complexity. The three key themes we will explore for controlling complexity are



6.001, Fall Semester, 1996|Lecture Notes { Sept. 5, 1996 2

� black box abstraction

� conventional interfaces

� meta-linguistic abstraction

Basic Scheme

The remainder of today's lecture will focus on basic components of the LISP programming language,

especially the syntax and semantics of simple expressions in LISP.

Every LISP program is constructed from expressions, each of which has a syntax (rules of legal

formation) and a semantics (rules for deducing meaning).

The three main components of any language are

� primitives

� means of combination

� and means of abstraction.

In the space below, �ll in examples of the di�erent types of Lisp expressions:

Syntax Semantics

Primitives

Combinations

Abstractions

Below is some scratch space for including examples:



6.001, Fall Semester, 1996|Lecture Notes { Sept. 5, 1996 3

RULES FOR EVALUATION:

� the value of a numeral is itself

� the value of a primitive operation is a pointer to the internal machine instructions to accom-

plish it

� the value of a name is the value associated with that name in an environment

� the value of a combination is obtained by:

{ Evaluating the subexpressions in any order

{ Applying the value of the operator subexpression to the values of the other subexpres-

sions, where applying a compound procedure means evaluating the body of the procedure

with each formal parameter replaced by is corresponding value.

Scheme's fundamental procedure maker is a lambda expression, which consists of a set of formal

parameters and a body.

You can include an example below:

To trace the evaluation of expressions that use such constructed procedures, we can use the set

rules of evaluation above, ampli�ed to note that substitution of formal parameters does not cross

the barriers of a lambda expression.



6.001, Fall Semester, 1996|Lecture Notes { Sept. 5, 1996 4

An example:

(define square (lambda (x) (* x x)))

(define sum-of-squares

(lambda (x y)

(+ (square x) (square y))))

(define f (lambda (a)

(diff-of-squares (+ a 2) (* a 3))))


