Version of October 22, 1996

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Fall Semester, 1996

Lecture Notes — October 17, 1996

Environment Model

Today’s lecture introduces a new model of evaluation, called the environment model. This
model involves changing our perception of objects in our language.

e we change our view of procedures from functions to objects.

e we change our view of variables from names to places.

An environment is a sequence of frames and each frame is a table of bindings, each of
which is a pairing of variable and value.

Sketch an example of an environment below:

Rules for the Environment Model

e To evaluate a combination (other than a special form) first evaluate the subexpressions
of the combination, and then apply the value of the operator subexpression to the
values of the operand subexpressions.

e The value of a variable with respect to an environment is the value given by the binding
of the variable in the first frame in the environment that contains such a binding.



6.001, Fall Semester, 1996— Lecture Notes — October 17, 1996 2

e Evaluating a lambda expression produces a procedure object, which consists of two
parts. The first is the code of the procedure, which is given by the text of the lambda
expression. The second is the environment pointer, which points to the environment in
which the lambda expression was evaluated to produce the procedure.

e Define adds a binding to a frame.

e A procedure object is applied to a set of arguments by constructing a frame, binding
the formal parameters of the procedure to the actual arguments of the call, and then
evaluating the body of the procedure in the context of the new environment contructed.
The new frame has as its enclosing environment the environment part of the procedure
object being applied.

Sketch the environment diagram that evolves from the follow code examples.

(define x 63)

(define square (lambda (x)

(* x x)))

(define sum-sq (lambda (x y)
(+ (square x) (square y))))

(sum-sq 3 4) ==> 25

Environment diagram 1.



6.001, Fall Semester, 1996— Lecture Notes — October 17, 1996

Here is a second example:

(define (sqrt x)
(define (sqrt-iter guess)
(if (good-enuf? guess)
guess
(sqrt-iter (improve guess))))
(define (good-enuf? guess)
(< (abs (- (square guess) x)) .001))
(define (improve guess)
(average guess (/ x guess)))
(sqrt-iter 1))

(sqrt 2)

Environment diagram 2.



6.001, Fall Semester, 1996— Lecture Notes — October 17, 1996

(define (make-adder n)
(lambda (x) (+ x n)))

(define addthree (make-adder 3))
(define addfive (make-adder 5))
(addfive 7)

(addthree 7)

Figure 3. Environment diagram 3.



6.001, Fall Semester, 1996— Lecture Notes — October 17, 1996 5

Environments enable us to understand how we can use procedures as representations for data
abstractions. For example, consider the following method for building complex numbers:

(define (make-rectangular x y)
(define (dispatch op)
(cond ((eq? op ’real) x)
((eq? op ’imag) y)
((eq? op ’mag)
(sqrt (+ (square x) (square y))))
((eq? op ’angle)
(atan y x))))
dispatch)

(define c1 (make-rectangular 3 4))

(cl ’imag)

Figure 4. Environment diagram 4.



