Version of October 22, 1996

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Fall Semester, 1996

Lecture Notes, October 22 — State and Mutation

Environment Model

1.

To evaluate a combination: evaluate subexpressions then apply value of operator subexpres-
sion to values of operand subexpressions.

. Value of a variable w.r.t. an environment is the value given by the binding of the variable in

the first frame in the environment that contains such a binding.

. A lambda expression produces a procedure object:

e code (parameters and body) are given by the text of the lambda and are stored away
for later use

e environment pointer points to the environment in which the lambda expression was
evaluated

. Define adds a binding to the current frame

. To apply a procedure object to a set of arguments:

e Create a new frame

Hang the frame from the environment part of the procedure object being applied

In the new frame, bind the formal parameters of the procedure to the actual arguments

Evaluate the body of the procedure in the context of the new environment
To evaluate (set! <var> <exp>) w.r.t. an environment E:

e Evaluate <exp> w.r.t. E

e Find and change the nearest binding for <var> in E

Implications of Mutation




6.001, Fall Semester, 1996—Lecture Notes, October 22 — State and Mutation

Message-Passing Ship Implementation

(define (make-ship x-pos y-pos time-left)
(define (move dx dy)
(set! x-pos (+ x-pos dx))
(set! y-pos (+ y-pos dy))
(1ist x-pos y-pos))
(define (count-down)
(set! time-left (- time-left 1))
(if (<= time-left 0)
’blast-off
time-left))
(define (dispatch message)
(cond ((eq? message ’move) move)
((eq? message ’count-down) count-down)
(else (error "No method" message))))
dispatch)

(define enterprise (make-spaceship 0 0 10))

((enterprise ’move) 1 2) ==> (1 2)

Data-Directed Ship Implementation

(define (install-ship-package)

;; Internal representation

(define (make-ship x y time) (list x y time))

; Accessors

(define (ship-x ship) (car ship))

(define (ship-y ship) (cadr ship))

; Mutators

(define (set-ship-x! ship new-x)
(set-car! ship new-x))

(define (set-ship-y! ship new-y)
(set-car! (cdr ship) new-y))

; Operations

(define (move ship dx dy)
(set-ship-x! (+ (ship-x ship) dx))
(set-ship-y! (+ (ship-y ship) dy))
(1ist (ship-x ship) (ship-y ship)))

;; External representation - tagged object
(define (tag x) (attach-tag ’spaceship x))
(put ’make ’spaceship

(lambda (x y t) (tag (make-ship x y t))))
(put ’move ’spaceship

(lambda (s dx dy) (tag (move s dx dy))))
’done

)

(define (move obj dx dy)
(apply-generic ’move obj dx dy)



