
1
Version of October 22, 1996

MASSACHVSETTS INSTITVTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Fall Semester, 1996

Lecture Notes, October 22 { State and Mutation

Environment Model

1. To evaluate a combination: evaluate subexpressions then apply value of operator subexpres-

sion to values of operand subexpressions.

2. Value of a variable w.r.t. an environment is the value given by the binding of the variable in

the �rst frame in the environment that contains such a binding.

3. A lambda expression produces a procedure object:

� code (parameters and body) are given by the text of the lambda and are stored away

for later use

� environment pointer points to the environment in which the lambda expression was

evaluated

4. De�ne adds a binding to the current frame

5. To apply a procedure object to a set of arguments:

� Create a new frame

� Hang the frame from the environment part of the procedure object being applied

� In the new frame, bind the formal parameters of the procedure to the actual arguments

� Evaluate the body of the procedure in the context of the new environment

6. To evaluate (set! <var> <exp>) w.r.t. an environment E:

� Evaluate <exp> w.r.t. E

� Find and change the nearest binding for <var> in E

Implications of Mutation



6.001, Fall Semester, 1996|Lecture Notes, October 22 { State and Mutation 2

Message-Passing Ship Implementation

(define (make-ship x-pos y-pos time-left)

(define (move dx dy)

(set! x-pos (+ x-pos dx))

(set! y-pos (+ y-pos dy))

(list x-pos y-pos))

(define (count-down)

(set! time-left (- time-left 1))

(if (<= time-left 0)

'blast-off

time-left))

(define (dispatch message)

(cond ((eq? message 'move) move)

((eq? message 'count-down) count-down)

(else (error "No method" message))))

dispatch)

(define enterprise (make-spaceship 0 0 10))

((enterprise 'move) 1 2) ==> (1 2)

Data-Directed Ship Implementation

(define (install-ship-package)

;; Internal representation

(define (make-ship x y time) (list x y time))

; Accessors

(define (ship-x ship) (car ship))

(define (ship-y ship) (cadr ship))

; Mutators

(define (set-ship-x! ship new-x)

(set-car! ship new-x))

(define (set-ship-y! ship new-y)

(set-car! (cdr ship) new-y))

; Operations

(define (move ship dx dy)

(set-ship-x! (+ (ship-x ship) dx))

(set-ship-y! (+ (ship-y ship) dy))

(list (ship-x ship) (ship-y ship)))

;; External representation - tagged object

(define (tag x) (attach-tag 'spaceship x))

(put 'make 'spaceship

(lambda (x y t) (tag (make-ship x y t))))

(put 'move 'spaceship

(lambda (s dx dy) (tag (move s dx dy))))

'done

)

(define (move obj dx dy)

(apply-generic 'move obj dx dy)


