
1

Environment Model

1. To evaluate a combination: evaluate subexpressions then
apply value of operator subexpression to values of operand
subexpressions.

2. Value of a variable w.r.t. an environment is the value given by
the binding of the variable in the first frame in the environ-
ment that contains such a binding.

3. A lambda expression produces a procedure object:
- code (parameters and body) are given by the text of the

lambda and are stored away for later use
- environment pointer points to the environment in which

the lambda expression was evaluated

4. Define adds a binding to the current frame

5. To apply a procedure object to a set of arguments:
- Create a new frame
- Hang the frame from the environment part of the procedure

object being applied
- In the new frame, bind the formal parameters of the proce-

dure to the actual arguments
- Evaluate the body of the procedure in the context of the new

environment

6. To evaluate (set! <var> <exp>) w.r.t. an environment E:
- Evaluate <exp> w.r.t. E
- Find and change the nearest binding for <var> in E to hold

value of <exp>

2

Use and Mis-Use of Set!

;; Functional programming style

(define (factorial n)

 (define (iter product counter)

 (if (> counter n)

 product

 (iter (* counter product)

 (+ counter 1))))

 (iter 1 1))

;; Imperative programming style -- DEPRECATED

(define (factorial n)

 (let ((product 1)

 (counter 1))

 (define (iter)

 (if (> counter n)

 product

 (begin (set! product (* counter product))

 (set! counter (+ counter 1))

 (iter))))

 (iter)))

3

;; Imperative programming style -- BUGGY!

(define (factorial n)

 (let ((product 1)

 (counter 1))

 (define (iter)

 (if (> counter n)

 product

 (begin (set! counter (+ counter 1))

 (set! product (* counter product))

 (iter))))

 (iter)))

4

Implications of Mutation

• Must worry about time and change: order of evaluation mat-
ters!

• Variables no longer stand for values
- Become places whose contents may change

• Must worry about identity: lose referential transparency

• Natural for modeling objects/systems with state

5

Message-Passing Ship Implementation

(define (make-ship x-pos y-pos time-left)

 (define (move dx dy)

 (set! x-pos (+ x-pos dx))

 (set! y-pos (+ y-pos dy))

 (list x-pos y-pos))

 (define (count-down)

 (set! time-left (- time-left 1))

 (if (<= time-left 0)

 ’blast-off

 time-left))

 (define (dispatch message)

 (cond ((eq? message ’move) move)

 ((eq? message ’count-down) count-down)

 (else (error "No method" message))))

 dispatch)

(define enterprise (make-spaceship 0 0 10))

((enterprise ’move) 1 2) ==> (1 2)

6

Data-Directed Ship Implementation

(define (install-ship-package)

 ;; Internal representation

 (define (make-ship x y time) (list x y time))

 ; Accessors

 (define (ship-x ship) (car ship))

 (define (ship-y ship) (cadr ship))

 ; Mutators

 (define (set-ship-x! ship new-x)

 (set-car! ship new-x))

 (define (set-ship-y! ship new-y)

 (set-car! (cdr ship) new-y))

 ; Operations

 (define (move ship dx dy)

 (set-ship-x! (+ (ship-x ship) dx))

 (set-ship-y! (+ (ship-y ship) dy))

 (list (ship-x ship) (ship-y ship)))

 ;; External representation - tagged object

 (define (tag x) (attach-tag ’spaceship x))

 (put ’make ’spaceship

 (lambda (x y t) (tag (make-ship x y t))))

 (put ’move ’spaceship

 (lambda (s dx dy) (tag (move s dx dy))))

 ’done

)

(define (move obj dx dy)

 (apply-generic ’move obj dx dy)

