Environment Model

1. To evaluate a combination: evaluate subexpressions then
apply value of operator subexpression to values of operand
subexpressions.

2. Value of avariable w.r.t. an environment is the value given by
the binding of the variable in the first frame in the environ-
ment that contains such a binding.

3. A lambda expression produces a procedure object:
- code (parameters and body) are given by the text of the
lambda and are stored away for later use
- environment pointer points to the environment in which
the lambda expression was eval uated

4. pefi ne adds abinding to the current frame

5. Toapply aprocedure object to a set of arguments:

- Create anew frame

- Hang the frame from the environment part of the procedure
object being applied

- Inthe new frame, bind the formal parameters of the proce-
dure to the actual arguments

- Evaluate the body of the procedure in the context of the new
environment

6. Toevaluate (set! <var> <exp>)W.r.t. an environment E:
- BEvauate <exp>w.r.t. E
- Find and change the nearest binding for <var >in E to hold
value of <exp>



Use and Mis-Use of Set!

;; Functional progranm ng style
(define (factorial n)
(define (iter product counter)
(if (> counter n)
pr oduct
(iter (* counter product)
(+ counter 1))))
(iter 1 1))

;; |l nperative progranm ng style -- DEPRECATED
(define (factorial n)
(let ((product 1)
(counter 1))
(define (iter)
(if (> counter n)
product
(begin (set! product (* counter product))
(set! counter (+ counter 1))

(iter))))
(iter)))



;; |l nperative progranm ng style -- BUGGY!
(define (factorial n)
(let ((product 1)
(counter 1))
(define (iter)
(if (> counter n)
pr oduct
(begin (set! counter (+ counter 1))
(set! product (* counter product))

(iter))))
(iter)))



Implications of Mutation

Must worry about time and change: order of evaluation mat-
ters!

Variables no longer stand for values
- Become places whose contents may change

Must worry about identity: lose referential transparency

Natural for modeling objects/systems with state



Message-Passing Ship Implementation

(define (nmake-ship x-pos y-pos tine-left)
(define (nove dx dy)
(set! x-pos (+ x-pos dx))
(set! y-pos (+ y-pos dy))
(l'ist x-pos y-pos))
(define (count-down)
(set! tinme-left (- tinme-left 1))
(if (<=tinme-left 0)
" bl ast - of f
time-left))
(define (dispatch nessage)
(cond ((eqg? nessage ’'nbve) nove)
((eg? nessage ’'count-down) count-down)
(el se (error "No nethod" nessage))))
di spat ch)

(define enterprise (mke-spaceship 0 0 10))

((enterprise "nove) 1 2) ==> (1 2)



Data-Directed Ship Implementation

(define (install-ship-package)

;; Internal representation

(define (nmake-ship x y tinme) (list x y tine))

; Accessors

(define (ship-x ship) (car ship))

(define (ship-y ship) (cadr ship))
Mut at or s

(define (set-ship-x! ship new x)
(set-car! ship newx))

(define (set-ship-y! ship newy)
(set-car! (cdr ship) newy))

; Qperations

(define (nove ship dx dy)
(set-ship-x! (+ (ship-x ship) dx))
(set-ship-y! (+ (ship-y ship) dy))
(list (ship-x ship) (ship-y ship)))

;; External representation - tagged object
(define (tag x) (attach-tag 'spaceship x))
(put ' nmake ' spaceship

(lanbda (x y t) (tag (make-ship x y t))))
(put ' nove ’spaceship

(l anbda (s dx dy) (tag (nove s dx dy))))
" done

)

(define (nove obj dx dy)
(appl y-generic 'nove obj dx dy)



