
1
Version of October 24, 1996

MASSACHVSETTS INSTITVTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Fall Semester, 1996

Lecture Notes, October 24 { Object Oriented Programming

Object-Oriented System - Version 1

(define (make-speaker name)

(lambda (message)

(case message

((NAME) (lambda () name))

((CHANGE-NAME)

(lambda (new-name) (set! name new-name)))

((SAY)

(lambda (list-of-stuff)

(if (not (null? list-of-stuff))

(display-message list-of-stuff))

'NUF-SAID))

(else (no-method)))))

Abstract out retrieval of method from the object (given the message)...

(define (get-method message object)

(object message))

(define (ask object message . args)

(let ((method (get-method message object)))

(if (method? method)

(apply method args)

(error "No method for message" message))))

(define (no-method) '(NO-METHOD))

(define (method? x)

(cond ((procedure? x) #)

((eq? x (no-method)) #f)

(else (error "Object returned non-message" x))))



6.001, Fall Semester, 1996|Lecture Notes, October 24 { Object Oriented Programming 2

Object-Oriented System - Version 2

What if we want a speaker to call its own method??

Problem: no access to the "object" from inside itself! Solution: add explicit "self" argument to all

methods

(define (make-speaker name)

(lambda (message)

(case message

((NAME) (lambda (self) name))

((CHANGE-NAME)

(lambda (self new-name)

(set! name new-name)

(ask self 'SAY (list 'call 'me name))))

((SAY)

(lambda (self list-of-stuff)

(if (not (null? list-of-stuff))

(display-message list-of-stuff))

'NUF-SAID))

(else (no-method)))))

(define (ask object message . args)

(let ((method (get-method message object)))

(if (method? method)

(apply method object args)

(error "No method for message" message))))

(ask p 'CHANGE-NAME 'fred)

Call me fred

A Specialized Speaker (Subclass)

Want lecturers to be a kind of speaker - that inherit the behav- ior of speakers but add to that

behavior:

(define (make-lecturer name)

(let ((speaker (make-speaker name)))

(lambda (message)

(case message

((LECTURE)

(lambda (self stuff)

(delegate speaker self

'SAY '(Good Morning!))

(delegate speaker self 'SAY stuff)))

(else (get-method message speaker))))))

(define d (make-lecturer 'Duane))

(ask d 'LECTURE '(Today we learn more))

Good Morning!

Today we learn more



6.001, Fall Semester, 1996|Lecture Notes, October 24 { Object Oriented Programming 3

Approach: Inheritance by Delegation

� Inherit behavior by adding an "internal" speaker

{ Get internal object to act on behalf of object by delegation

� If message is not recognized, pass the buck

� Can change or specialize behavior:

{ Add new methods

{ Change operation of methods

Another Subclass

Want a "Canadian Lecturer" that changes the basic way of talk- ing: append "Eh?" to everything

he says...

(define (make-canadian-lecturer name)

(let ((lecturer (make-lecturer name)))

(lambda (message)

(case message

((SAY)

(lambda (self stuff)

(delegate lecturer self

'SAY (append stuff '(Eh?)))))

(else (get-method message lecturer))))))

(define (delegate to from message . args)

(let ((method (get-method message to)))

(if (method? method)

(apply method from args)

(error "No method" message))))

(define (ask object message . args)

(apply delegate object object message args))

(define e (make-canadian-lecturer 'Eric))

(define (get-method message preferred . others)

(define (loop objs)

(let ((method (get-method-from-object

message (car objs)))

(rest (cdr objs)))

(if (or (method? method) (null? rest))

method

(loop rest)))))

(define (get-method-from-object message object)

(object message))



6.001, Fall Semester, 1996|Lecture Notes, October 24 { Object Oriented Programming 4

Alternative Multiple Inheritance

We have lots of 
exibility - suppose we want to pass the message on to multiple internal objects

(not just some "preferred" one)?

(define eric

(let ((comic (make-comic))

(lecturer (make-canadian-lecturer 'Eric)))

(lambda (message)

(lambda (self . args)

(apply delegate-to-all

(list lecturer comic)

self

args)))))

(ask eric 'SAY '(The sky is blue))

The sky is blue Eh?

The sky is blue ha ha

(define (delegate-to-all to-list from message . args)

(foreach

(lambda (to-whom)

(apply delegate to-whom from message args))

to-list)


