Managing Large Systems

Object-Oriented

* Operation-Centric:
- Generic operations
- Dispatch on type
- Data-directed programming

* Type/Object-Centric:

- Message passing
- Object-oriented programming (today!)

3 Type
(spaceshi p) (pl anet)
move))
= count - down Data
= OO Directed
=
-
. J

(define (install-ship-package)

Data-Directed Ship Implementation
my-ship

;; Internal representation
(define (nmake-ship x y tinme) (list x y tine))
(define (ship-x ship) (car ship))
(define (set-ship-x! ship newx)
(set-car! ship newx))

(define (nove ship dx dy)
(set-ship-x! (+ (ship-x ship) dx))
(set-ship-y! (+ (ship-y ship) dy))
(l'ist (ship-x ship) (ship-y ship)))
(define (count-down ship)
(let ((time (ship-time-left ship)))
(set-tinme-left! (- tinme 1))
(if (<=tinme 0) ’"blast-off timne)bug!

External representation - tagged object
(define (tag x) (attach-tag ’'spaceship x))
(put ' nmake ’'spaceship

(lanbda (x y t) (tag (make-ship x y t))))
(put ’nove ’'spaceship

(lanbda (s dx dy) (tag (nove s dx dy))))
(put ’count-down ’spaceshi p count - down)
" done

)

(define (nove obj dx dy)

(appl y-generic 'nove obj dx dy)

Message-Passing Ship Implementation

my-ship

X-pos: O
y-pos: O
time-left:
nove:

2

count -down: |

di spat ch:

(define (nmake-spaceship x-pos y-pos tine-left)
(define (nove dx dy)
(set! x-pos (+ x-pos dx))
(set! y-pos (+ y-pos dy))
(l'ist Xx-pos y-pos))
(define (count-down)
(set! tinme-left (- tine-left 1))
(if (<=time-left 0)
" bl ast - of f
time-left)) ; no bug
(define (dispatch nessage)
(cond ((eq? nessage ’'nove) nove)
((eq? nessage ' count-down) count-down)
(else (error "No nethod" nessage))))
di spat ch)

(define enterprise (nmake-spaceship 0 0 2))
((enterprise "nove) 1 2) ==> (1 2)

Object-Oriented Programming

1960’'s: Simula
1970's. Smalltalk
1980's. C++
1990's: Java

Individual entities or objects which are categorized into groups
or classes that behave similarly, but with individual differences
based on internal state of each instance.

Properties of an Object

1. Instances have |l dentity: in sense of eq?
- Objects instances as Scheme message-passing procedures
- Classes as Scheme "make-<object>" procedure

2. Private State: gives each object (each instance of a class) the
ability to behave differently
- Local environment

3. Methods for responding to messages
- Scheme procedures (take method-dependent arguments)

4. Anlnheritance Ruletelling what method to useif no specific
method is defined for a given message
- Need to add conventions on messages & methods

Object-Oriented System - Version 1

(define (nake-speaker nane)
(1 anbda (nessage)
(cond ((eq? nessage 'NAME) (|l anmbda () nane))

((eq? nessage ' CHANGE- NAIE)

(I anbda (new nane) (set! nane new nane)))
((eq? nessage ' SAY)

(lanmbda (list-of-stuff)

(if (not (null? list-of-stuff))
(di spl ay-nessage list-of-stuff))
' NUF- SAID)))

(else (no-nethod)))))

Or, with an alternative case syntax:

(define (nake-speaker nane)
(1 anbda (nessage)
(case nessage
((NAME) (lanmbda () nane))
((CHANGE- NAME)
(I anbda (new nane) (set! nane new nane)))
((SAY)
(lanbda (list-of-stuff)
(if (not (null? list-of-stuff))
(di spl ay-nessage list-of-stuff))
" NUF- SAI D))
(el se (no-nethod)))))

OO System - Version 1 Cont’d

Abstract out retrieval of method from the object (given the mes-
sage)...

(define (get-nethod nessage object)
(obj ect nessage))

... and the combined retrieval and application of that method to
the arguments;

(define (ask object nessage . args)
(let ((nmethod (get-nethod nessage object)))
(i1 f (method? nethod)
(apply nethod args)
(error "No nethod for nessage"” nessage))))

Detection of methods (or missing methods):

(define (no-nethod) ' (NO METHCD))

(define (nethod? x)
(cond ((procedure? x) #t)
((eg? x (no-nethod)) #f)
(el se (error "Qbject returned non-nessage" x))))

Example

(define p (make-speaker ' CGeorge))

(ask p ' NAME)
==> george

(ask p "SAY " (I cannot tell alie))
| cannot tell alie
==> nuf-sai d

A Specialized Speaker (Subclass)

Want lecturersto be akind of speaker - that inherit the behav-
lor of speakers but add to that behavior:

(define (nake-Iecturer nane)
(let ((speaker (make-speaker nane)))
(1 anbda (nessage)
(case nessage

((LECTURE)

(lanbda (self stuff)
(del egat e speaker self

" SAY ' (Good Morning!))

(del egat e speaker self *SAY stuff)))

(el se (get-nethod nessage speaker))))))

(define d (make-|ecturer ’'Duane))

(ask d ' LECTURE ' (Today we |earn nore))
Good Mor ni ng!

Today we | earn nore

Approach: Inheritance by Delegation

Inherit behavior by adding an "internal” speaker
- Get internal object to act on behalf of object by delegation

If message is not recognized, pass the buck

Can change or specialize behavior:
- Add new methods
- Change operation of methods

Object-Oriented System - Version 2

(define (nake-speaker nane)
(1 anbda (nessage)
(case nessage
((NAME) (| anbda ¢el f) nane))
((CHANGE- NAME)
(I anbda el f new nane)
(set! nanme new nane)
(ask self *SAY (list "call 'ne nane))
((SAY)
(lanbda el f list-of-stuff)
(if (not (null? list-of-stuff))
(di spl ay-nessage list-of-stuff))
" NUF- SAI D))
(el se (no-nethod)))))

(define (ask object nmessage . args)
(let ((nmethod (get-nethod nessage object)))
(i1 f (method? nethod)
(apply net hodobj ect args)
(error "No nethod for nessage"” nessage))))

(ask p ' CHANGE- NAME ' fred)
Call nme fred

10

Another Subclass

Want a"Canadian Lecturer” that changes the basic way of talk-
ing: append "Eh?' to everything he says...

(define (nmake-canadi an-1|ecturer nane)
(let ((lecturer (nmake-Ilecturer nane)))
(1 anbda (nessage)
(case nessage
((SAY)
(lanbda (self stuff)
(del egate | ecturer self
" SAY (append stuff ' (Eh?)))))
(el se (get-nethod nessage lecturer))))))

(define (delegate to from nessage . args)
(let ((nmethod (get-nethod nessage to)))
(if (method? met hod)
(apply nmethod from args)
(error "No nethod" nessage))))

(define (ask object nessage . args)
(apply del egate obj ect object nessage args))

(define e (make-canadi an-1ecturer 'Eric))
(ask e "SAY ' (The sky is blue))
The sky is blue Eh?

(ask e "LECTURE ' (The sky is blue))

Good Mor ni ng!
The sky is blue

11

Fixing the Bug

(define (nake-Iecturer nane)
(let ((speaker (make-speaker nane)))
(1 anbda (nessage)
(case nessage

((LECTURE)

(lanbda (self stuff)
(del egate speaker—self

L SAY ' (Good Mprningl))

(del egate speaker self ~SAY stuff)
(ask self *SAY ' (Good Morning!))
(ask self * SAY st uff)))

(el se (get-nethod nessage speaker))))))

(define e (nmake-canadi an-1ecturer "Eric))
(ask e "SAY ' (The sky is blue))
The sky is blue Eh?

(ask e "LECTURE ' (The sky is blue))

Good Mbrni ng! Eh?
The sky is blue Eh?

12

Multiple Inheritance

Can have objects that inherit methods from more than one type.
Suppose rather than a named speaker we have an anonymous
comic:

(define (nmake-com c)
(1 anbda (nessage)
(case nessage
((SAY)
(lanbda (self stuff)
(di spl ay- nessage (append stuff ’"(ha ha)))))
((JOKE)
(I anbda (sel f)
(di spl ay-nessage ' (A duck walks into a bar))))
(else (no-nethod)))))

Now we'll create afunny lecturer:

(define eric
(let ((comc (nake-comc))
(l ecturer (nmake-canadi an-lecturer '"Eric)))
(1 anbda (nessage)

(message | ect urer))))
(ask eric ’JOKE) \ \ secondary type
A duck wal ks into a bar preferred type

(ask eric *SAY ' (The sky is blue))
The sky is blue Eh?

13

OO System - Version 3

(define (get-nethod nessage preferred . others)
(define (|l oop objs)
(let ((nmethod (get-nethod-from object
nmessage (car objs)))
(rest (cdr objs)))
(if (or (nmethod? nmethod) (null? rest))
met hod

(loop rest))))
(l oop (cons preferred others)))

(define (get-nethod-from object nessage object)
(obj ect nessage))

14

Alternative Multiple Inheritance

We havelots of flexibility - suppose we want to pass the message
on to multiple internal objects (not just some "preferred” one)?

(define eric
(let ((comc (nake-comc))
(l ecturer (nmake-canadi an-lecturer '"Eric)))
(I anbda (nessage)
(lanbda (self . args)
(apply del egate-to-all
(list lecturer comc)
sel f

args)))))

(ask eric " SAY ' (The sky is blue))
The sky is blue Eh?
The sky is blue ha ha

(define (delegate-to-all to-list fromnessage . args)
(foreach
(1 anbda (t o-whom
(apply del egate to-whom from nessage args))
to-list)

15

