
1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Fall Semester, 1996

Lecture Notes { October 29, 1996

Concurrency and Time/State

Introducing mutation (e.g. set!) into our language forces us to confront what we mean by equality

and change.

An example of a simple procedure that is referentially transparent:

An example of a simple procedure involving mutation that is NOT referentially transparent:

Mutation has introduced issues of time directly into our language.

Consider two withdrawals from a joint bank account. Sketch below an example of why concurrent

procedures can cause problems:



6.001, Fall Semester, 1996|Lecture Notes { October 29, 1996 2

Possible restrictions on concurrent programming that will �x the problem of accessing shared

variables:

Serialization

Suppose we extend Scheme to include a procedure called parallel-execute:

(parallel-execute p1 p2 : : : pk)

Each p must be a procedure of no arguments. Parallel-execute creates a separate process for

each p, which applies p (to no arguments). These processes all run concurrently.

As an example of how this is used, consider

(define x 10)

(parallel-execute (lambda () (set! x (* x x)))

(lambda () (set! x (+ x 1))))

Here are the possible outcomes

� 101: P1 sets x to 100 and then P2 increments x to 101.

� 121: P2 increments x to 11 and then P1 sets x to x times x.

� 110: P2 changes x from 10 to 11 between the two times that P1 accesses the value of x during

the evaluation of (* x x).



6.001, Fall Semester, 1996|Lecture Notes { October 29, 1996 3

� 11: P2 accesses x, then P1 sets x to 100, then P2 sets x.

� 100: P1 accesses x (twice), then P2 sets x to 11, then P1 sets x.

But with serialization

(define x 10)

(define s (make-serializer))

(parallel-execute

(s (lambda () (set! x (* x x))))

(s (lambda () (set! x (+ x 1)))))

can produce only two possible values for x, 101 or 121. The other possibilities are eliminated,

because the execution of P1 and P2 cannot be interleaved.

We can �x our bank account example:

(define (make-account balance)

(define (withdraw amount)

(if (>= balance amount)

(begin (set! balance (- balance amount))

balance)

"Insufficient funds"))

(define (deposit amount)

(set! balance (+ balance amount))

balance)

(let ((protected (make-serializer)))

(define (dispatch m)

(cond ((eq? m 'withdraw)

(protected withdraw))

((eq? m 'deposit)

(protected deposit))

((eq? m 'balance) balance)

(else (error "Unknown request

-- MAKE-ACCOUNT"

m))))

dispatch))

A procedure to swap balances in two accounts

(define (exchange account1 account2)

(let ((difference (- (account1 'balance)

(account2 'balance))))

((account1 'withdraw) difference)

((account2 'deposit) difference)))

Suppose Paul swaps a1 and a2 at the same time that Peter swaps a1 and a3.

Peter might compute di�erence between a1 and a2 but then Paul might change the balance in a1

before Peter is able to complete the exchange.

So instead we can export a serializer:



6.001, Fall Semester, 1996|Lecture Notes { October 29, 1996 4

(define (make-account-with-serializer balance)

(define (withdraw amount)

(if (>= balance amount)

(begin (set! balance (- balance amount))

balance)

"Insufficient funds"))

(define (deposit amount)

(set! balance (+ balance amount))

balance)

(let ((balance-serializer (make-serializer)))

(define (dispatch m)

(cond ((eq? m 'withdraw) withdraw)

((eq? m 'deposit) deposit)

((eq? m 'balance) balance)

((eq? m 'serializer)

balance-serializer)

(else (error "Unknown request -- MAKE-ACCOUNT"

m))))

dispatch))

Now each user must explicitly manage serialization.

(define (deposit account amount)

(let ((s (account 'serializer))

(d (account 'deposit)))

((s d) amount)))

But exchanging is now straightforward.

(define (serialized-exchange account1 account2)

(let ((serializer1 (account1 'serializer))

(serializer2 (account2 'serializer)))

((serializer1 (serializer2 exchange))

account1

account2)))

An implementation of a serializer:

(define (make-serializer)

(let ((mutex (make-mutex)))

(lambda (p)

(define (serialized-p . args)

(mutex 'acquire)

(let ((val (apply p args)))

(mutex 'release)

val))

serialized-p)))

(define (make-mutex)

(let ((cell (list false)))

(define (the-mutex m)

(cond ((eq? m 'acquire)

(if (test-and-set! cell)

(the-mutex 'acquire))) ; retry

((eq? m 'release) (clear! cell))))

the-mutex))



6.001, Fall Semester, 1996|Lecture Notes { October 29, 1996 5

(define (clear! cell)

(set-car! cell false))

(define (test-and-set! cell)

(if (car cell)

true

(begin (set-car! cell true)

false)))


