The stream data abstraction:

```scheme
(define (integers-from n)
  (cons-stream n
              (integers-from (+ 1 n))))

(define integers (integers-from 1))
```

Implementation Strategies

- Use lazy evaluator declarations

- Extend eval with delays as “thanks” or “promises”

- Extend eval with delays as procedures (or memoized procedures)
Stream Higher Order Procedures

(define (stream-ref s n)
 (if (= n 0)
 (stream-car s)
 (stream-ref (stream-cdr s) (- n 1)))
)

(define (stream-map proc stream)
 (if (stream-null? stream)
 the-empty-stream
 (cons-stream (proc (stream-car stream))
 (stream-map proc (stream-cdr stream))))
)

(define (stream-filter pred s)
 (cond ((stream-null? s) the-empty-stream)
 ((pred (stream-car s))
 (cons-stream (stream-car s)
 (stream-filter pred (stream-cdr s))))
 (else (stream-filter pred (stream-cdr s))))
)

(define (enumerate-interval low high)
 (if (> low high)
 the-empty-stream
 (cons-stream low
 (enumerate-interval (+ low 1) high))))

Examples

(define no-sevens
 (stream-filter (lambda (n) (not (divisible? n 7)))
 integers))

(define (divisible? x y) (= (remainder x y) 0))

(stream-ref no-sevens 100)
; Value: 117
The Sieve of Eratosthenes - Prime Number Generation

(define (sieve s)
 (cons-stream (stream-car s)
 (sieve (stream-filter
 (lambda (x) (not (divisible? x (stream-car s))))
 (stream-cdr s))))
)

(define primes (sieve (integers-from 2))
 (stream-ref primes 200)

Other Stream Utilities

(define (show-stream s n)
 (cond ((= n 0) 'done)
 (else (write-line (stream-car s))
 (show-stream (stream-cdr s) (- n 1)))))

(define (add-streams s1 s2)
 (cond ((stream-null? s1) s2)
 ((stream-null? s2) s1)
 (else
 (cons-stream (+ (stream-car s1) (stream-car s2))
 (add-streams (stream-cdr s1) (stream-cdr s2))))))

(define (scale-stream c s)
 (stream-map (lambda (x) (* x c)) s))

(define (stream-map2 proc s1 s2)
 (if (stream-null? s1)
 the-empty-stream
 (cons-stream (proc (stream-car s1) (stream-car s2))
 (stream-map2 proc (stream-cdr s1) (stream-cdr s2)))))

Examples

(define ones (cons-stream 1 ones))

(define integers (cons-stream 1 (add-streams ones integers)))

A worksheet or table for the stream:
Stream of Fibonacci Numbers

(define fibs
 (cons-stream 0
 (cons-stream 1
 (add-streams (stream-cdr fibs)
 fibs)))))

A worksheet or table for the stream:

Stream of Square Roots

(define (sqrt-improve guess x)
 (average guess (/ x guess)))
(define (average a b) (/ (+ a b) 2))

(define (sqrt-stream x)
 (cons-stream 1.0
 (stream-map (lambda (g)
 (sqrt-improve g x))
 (sqrt-stream x))))

;; Follow the stream until desired tolerance is reached
(define (stream-limit s tol)
 (define (iter s)
 (let ((f1 (stream-car s))
 (f2 (stream-car (stream-cdr s)))))
 (if (close-enuf? f1 f2 tol)
 f2
 (iter (stream-cdr s))))))

(define (close-enuf? x y tol)
 (< (abs (- x y)) tol))

(stream-limit (sqrt-stream 2) 1.e-5)
Trapezoidal Integration

\[
\text{(define (trapezoid f a b h)}
\]
\[
\text{(let ((dx (* (- b a) h))}
\]
\[
\text{(n (/ 1 h)))}
\]
\[
\text{(define (iter i sum)}
\]
\[
\text{(let ((x (+ a (* i dx)))}
\]
\[
\text{(if (>= i n)}
\]
\[
\text{sum}
\]
\[
\text{(iter (+ i 1) (+ sum (f x)))))
\]
\[
(* \text{dx } \text{(iter 1 (+ (/ (f a) 2) (/ (f b) 2)))))}
\]

The Witch of Agnesi and Approximations to \(\pi\)

\[
\text{(define (witch x)}
\]
\[
\text{(/ 4 (+ 1 (* x x))))}
\]

\[
\text{(trapezoid witch 0. 1. .1)}
\]
\[
;\text{Value: 3.1399259889071587}
\]

\[
\text{(trapezoid witch 0. 1. .01)}
\]
\[
;\text{Value: 3.141575986923129}
\]

To learn more about Maria Agnesi, see http://www.agnesscott.edu/lriddle/women/agnesi.htm.

Stream of Approximations to \(\pi\)

\[
\text{(define (keep-halving R h)}
\]
\[
\text{(cons-stream (R h)}
\]
\[
\text{(keep-halving R (/ h 2))})}
\]

\[
\text{(show-stream (keep-halving (lambda (h) (trapezoid witch 0 1 h)) 0.1) 10)}
\]

\[
\text{(stream-limit}
\]
\[
\text{(keep-halving (lambda (h) (trapezoid witch 0 1 h)) 0.5) 1.e-9)}
\]
Accelerating the Approximation

Suppose we want to approximate a function $R(0)$ and we have the sequence of values $R(h), R(h/2), R(h/4), \ldots$. Suppose we also know that R has the form $R(h) = A + Bh^p + Ch^{2p} + Dh^{3p} + \ldots$. Then

$$\frac{2^p R(h/2) - R(h)}{2^p - 1} = A + C_2h^{2p} + D_2h^{3p} + \ldots$$

That is to say, this new sequence converges to the same value as the original, but it converges faster. We can formulate this as a stream process:

```lisp
(define (accel-halving-seq s p)
  (let ((2**p (expt 2 p)))
    (let ((2**p-1 (- 2**p 1)))
      (stream-map2 (lambda (Rh Rh/2)
                     (/ (- (* 2**p Rh/2) Rh)
                        2**p-1))
                   s
                   (stream-cdr s))))

(make-tableau s p)
```

Finally, take just the first element of each row to get the “Richardson acceleration” of the original series:

```lisp
(define (richardson-accel s p)
  (stream-map stream-car
               (make-tableau s p)))

(stream-limit (richardson-accel
               (keep-halving (lambda (h) (trapezoid witch 0 1 h)) .1) 2) 6)
```

This requires only 73 evaluations of the witch to get π to 9 decimal places!