Version of December 3, 1996

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Fall Semester, 1996

Lecture Notes, December 3 — Memory Management

List-Structured Memory

A good abstraction for memory hardware is a linear vector or storage locations with each location
indicated by an “address” or “offset” from the start of memory, and with constant time access to
any location of that memory:

(vector-ref <wector> <offset>)
(vector-set! <wector> <offset> <walue>)
The corresponding register machine primitives are
(assign <reg-name> (op vector-ref) (reg <wector>) <offset>)
(perform (op vector-set!) (reg <wector>) <offset> <wvalue>)

To implement cons cells, we use two special vectors, the-cars and the-cdrs. Below, copy a simple
example of these vectors:

Our notation for typed pointers include the following:




6.001, Fall Semester, 1996—Lecture Notes, December 3 — Memory Management 2

An example to put in our memory:

(define a (1 2 3))
(define b (cons a a))

Register Machine Implementation of Pair Abstraction
To implement pairs, we need to replace the “higher level” abstractions we have been using for cons,
car, and cdr with the available vector-oriented machinery. For example,
(assign <regl> (op car) (reg <reg2>))
becomes
(assign <regl> (op vector-ref) (reg the-cars) (reg <reg2>))
Similarly,
(assign <regl> (op cdr) (reg <reg2>))
becomes
(assign <regl> (op vector-ref) (reg the-cdrs) (reg <reg2>))
Allocation of a cons cell depends upon some additional conventions, specifically about where to find
free or available cons cells. Here we assume that free points to the first free location in memory,

and that everything else below free is also available for use. Thus, cons can be implemented as
in this example:

(assign <regl> (op cons) (reg <reg2>) (const <walue>))
becomes

(perform (op vector-set!) (reg the-cars) (reg free) (reg <reg2>))
(perform (op vector-set!) (reg the-cdrs) (reg free) (const <walue>))
(assign <regl> (reg free))

(assign free (op +) (reg free) (const 1))



6.001, Fall Semester, 1996—Lecture Notes, December 3 — Memory Management

Garbage Collection
Method 1: Reference Count

The basic idea is:

An example:

Method 2: Mark-Sweep

The basic idea is:

An example:



6.001, Fall Semester, 1996—Lecture Notes, December 3 — Memory Management

Method 3: Stop and Copy

The basic idea is:

An example:




