
1

Scheme Interpreter - Register Machine

argl

val

env

continue

exp

proc

unev

+

*

>

cons

heap
stack

Data Flow:

2

Vector Implementation of the Stack

(save <value>)

becomes

(assign stack-pointer

 (op +) (reg stack-pointer) (const 1))

(perform (op vector-set!)

 (reg stack) (reg stack-pointer) <value>)

(restore <regname>)

becomes

(assign <regname>

 (op vector-ref) (reg stack) (reg stack-pointer))

(assign stack-pointer

 (op -) (reg stack-pointer) (const 1))

0
1
2
3
4

5
6
7

...

stack

stack-
pointer

Occupied

Empty

3

Implementing the Pair Abstraction

Pair accessors:

 (assign <regname> (op car) <source>)

 (assign <regname> (op cdr) <source>)

becomes
 (assign <regname>

 (op vector-ref) (reg the-cars) <source>)

 (assign <regname>

 (op vector-ref) (reg the-cdrs) <source>)

where <source> is now treated as an offset into the heap.

Pair allocation:

 (assign <regname> (op cons) <value1> <value2>)

becomes
 (perform (op vector-set!)

 (reg the-cars) (reg free) <value1>)

 (perform <op vector-set!)

 (reg the-cdrs) (reg free) <value2>)

 (assign <regname> (reg free))

 (assign free (op incr) (reg free))

4

Mark/Sweep

Mark Phase:

• If pair
- If already marked, then return
- else

-- set the mark
-- mark car
-- mark cdr

• Else not a pair, so return

Sweep Phase:

• Set free to E0
• Start scanning at end of memory
• Scan loop

- If scan pointer is before start of memory, then we’re done
- If mark set for scan cell

-- clear mark
-- move scan pointer back one
-- continue at scan loop

- Else mark is not set
-- set cdr of scan cell to free
-- set free to scan
-- move scan pointer back one
-- continue at scan loop

5

Stop & Copy

Two Parts:

1. Move cells in old memory to front of new memory

2. Update pointers in new memory to point to *new* locations
of cells

Sweep Phase:

• Set free to E0
• Start scanning at end of memory
• Scan loop

- If scan pointer is before start of memory, then we’re done
- If scan cell already marked, then return
- If mark set for scan cell

-- clear mark
-- move scan pointer back one
-- continue at scan loop

- Else mark is not set
-- set cdr of scan cell to free
-- set free to scan
-- move scan pointer back one
-- continue at scan loop

