Computability

Q: Can we eliminate the need for define and rely solely on lambda?

A:

We used define to name loop to generate a procedure that never terminates. An infinite loop without define is

((lambda (h) (h h))
 (lambda (h) (h h))
 -->
 ((lambda (h) (h h))
 (lambda (h) (h h)))
which evaluates to itself.

What about recursive procedures, such as

(define fact
 (lambda (n)
 (if (= n 0)
 1
 (* n (fact (- n 1))))))

Here, we use define to name the procedure so that we can call it recursively. We can eliminate the define by lambda-abstracting the procedure name:

(lambda (fact)
 (lambda (n)
 (if (= n 0)
 1
 (* n (fact (- n 1))))))

Call this F. But what do we apply F to to get factorial? For example, we could apply F to 1+ and call this on 6; since 6 is not 0, this yields (* 6 (1+ (- 6 1))), or (* 6 6).

We really want to apply F to factorial, i.e., to F itself. If we apply F to F and call this on 6, we get (* 6 (F (- 6 1))); but the recursive call to (F 5) fails because fact isn’t bound to F in this call. So what we need is a method of applying F to itself “just enough.”

Suppose we had an operator, Y, with the property that for any f, ((Y f) n) = (((f (Y f)) n).
((Y F) 3) = ((F (Y F)) 3)
 = (((lambda (fact)
 (lambda (n)
 (if (= n 0)
 1
 (* n (fact (- n 1))))))
 (Y F))
 3)
 = ((lambda (n)
 (if (= n 0)
 1
 (* n ((Y F) (- n 1)))))
 3)
 = (if (= 3 0)
 1
 (* 3 ((Y F) (- 3 1))))
 = (* 3 ((Y F) 2))
 = (* 3 (* 2 ((Y F) 1)))
 = (* 3 (* 2 (* 1 ((Y F) 0))))
 = (* 3 (* 2 (* 1 1)))
 = 3!

Now how do we construct Y using only lambda?

We can get our infinite loop to do some work by adding an f:

(((lambda (h) (f (h h)))
 (lambda (h) (f (h h))))
--) (f ((lambda (h) (f (h h)))
 (lambda (h) (f (h h)))))

Unfortunately, if we actually type this into Scheme, it will go into an infinite loop (adding an infinite number of applications of f). We can prevent this by adding a dummy lambda and application, delaying evaluation until we need it:

 Y = (lambda (f)
 ((lambda (h) (lambda (x) ((f (h h)) x)))
 (lambda (h) (lambda (x) ((f (h h)) x)))))

We'll abbreviate (lambda (h) (lambda (x) ((f (h h)) x))) by D; (Y f) = (D D).

Now ((Y f) n) = ((D D) n) ; expand (Y f)
 = (((lambda (h)
 (if (D D) x)))
 D)
 n) ; apply (lambda (h) ...)
 = ((lambda (x)
 (if (D D) x)))
 n) ; to D
 = ((f (D D)) n) ; apply (lambda (x) ...)
 = ((f (Y f)) n) ; to n
 = ((f (Y f)) n) ; (Y f) = (D D)
In fact, we can test this in Scheme by evaluating

```
=> (((lambda (f)
    ((lambda (h) (lambda (x) ((f (h h)) x)))
    (lambda (h) (lambda (x) ((f (h h)) x))))))
  (lambda (fact)
    (lambda (n)
      (if (= n 0)
        1
        (* n (fact (- n 1))))))
  10)
```

Q: Are there well-defined things that cannot be computed?

A:

Assume that we have a procedure `(safe? p a)` that returns true if evaluating `(p a)` produces an answer and returns false otherwise. An example of a non-terminating procedure (with no arguments) is:

```
(define (loop) (loop))
```

Now what happens when we do

```
(define (diag? x)
  (if (safe? x x)
      (not (apply x (list x)))
      nil))

(diag? diag?)
```