
1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Fall Semester, 1996

Lecture Notes | 10 December

Computability

Q: Can we eliminate the need for define and rely solely on lambda?

A:

We used define to name loop to generate a procedure that never terminates. An in�nite loop

without define is

((lambda (h) (h h))

(lambda (h) (h h)))

-->

((lambda (h) (h h))

(lambda (h) (h h)))

which evaluates to itself.

What about recursive procedures, such as

(define fact

(lambda (n)

(if (= n 0)

1

(* n (fact (- n 1))))))

Here, we use define to name the procedure so that we can call it recursively. We can eliminate

the define by lambda-abstracting the procedure name:

(lambda (fact)

(lambda (n)

(if (= n 0)

1

(* n (fact (- n 1))))))

Call this F. But what do we apply F to to get factorial? For example, we could apply F to 1+ and

call this on 6; since 6 is not 0, this yields (* 6 (1+ (- 6 1))), or (* 6 6).

We really want to apply F to factorial, i.e. to F itself. If we apply F to F and call this on 6, we get

(* 6 (F (- 6 1))); but the recursive call to (F 5) fails because fact isn't bound to F in this

call. So what we need is a method of applying F to itself \just enough."

Suppose we had an operator, Y, with the property that for any f, ((Y f) n) = ((f (Y f)) n).

6.001, Fall Semester, 1996|Lecture Notes | 10 December 2

((Y F) 3) = ((F (Y F)) 3)

= (((lambda (fact) ; substitute for �rst F

(lambda (n)

(if (= n 0)

1

(* n (fact (- n 1))))))

(Y F))

3) ; apply (lambda (fact) ...)

= ((lambda (n) ; to (Y F)

(if (= n 0)

1

(* n ((Y F) (- n 1)))))

3) ; apply (lambda (n) ...)

= (if (= 3 0) ; to 3

1

(* 3 ((Y F) (- 3 1)))) ; evaluate (if ...)

= (* 3 ((Y F) 2))

= (* 3 (* 2 ((Y F) 1)))

= (* 3 (* 2 (* 1 ((Y F) 0))))

= (* 3 (* 2 (* 1 1)))

= 3!

Now how do we construct Y using only lambda?

We can get our in�nite loop to do some work by adding an f:

((lambda (h) (f (h h)))

(lambda (h) (f (h h))))

-->

(f ((lambda (h) (f (h h)))

(lambda (h) (f (h h)))))

Unfortunately, if we actually type this into Scheme, it will go into an in�nite loop (adding an in�nite

number of applications of f). We can prevent this by adding a dummy lambda and application,

delaying evaluation until we need it:

Y = (lambda (f)

((lambda (h) (lambda (x) ((f (h h)) x)))

(lambda (h) (lambda (x) ((f (h h)) x))))

We'll abbreviate (lambda (h) (lambda (x) ((f (h h)) x))) by D; (Y f) = (D D).

Now ((Y f) n) = ((D D) n) ; expand (Y f)

= (((lambda (h) ; expand �rst D

(lambda (x)

((f (h h) x))))

D)

n) ; apply (lambda (h) ...)

= ((lambda (x) ; to D

((f (D D) x)))

n) ; apply (lambda (x) ...)

= ((f (D D)) n) ; to n

= ((f (Y f)) n) ; (Y f) = (D D)

6.001, Fall Semester, 1996|Lecture Notes | 10 December 3

In fact, we can test this in Scheme by evaluating

==> (((lambda (f)

((lambda (h) (lambda (x) ((f (h h)) x)))

(lambda (h) (lambda (x) ((f (h h)) x)))))

(lambda (fact)

(lambda (n)

(if (= n 0)

1

(* n (fact (- n 1)))))))

10)

3628800

Q: Are there well-de�ned things that cannot be computed?

A:

Assume that we have a procedure (safe? p a) that returns true if evaluating (p a) produces

an answer and returns false otherwise. An example of a non-terminating procedure (with no

arguments) is:

(define (loop) (loop))

Now what happens when we do

(define (diag? x)

(if (safe? x x)

(not (apply x (list x)))

nil))

(diag? diag?)

