
1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Fall Semester, 1996

Lecture Notes { Sept. 17, 1996

Capturing Common Patterns with Higher Order Procedures

A simple common pattern: (� 2 2) (� 3 3) (� 4 4)

This is captured by

(define (square x) (* x x))

This provides a NAME for the idea of multiplying something by itself.

Three sums

1 + 2+ : : :+ 100

12 + 22 + : : :+ 1002

1

12
+

1

32
+ : : :+

1

992

Here are three procedures that compute these sums:

(define (sum-integers a b)

(if (> a b)

0

(+ a (sum-integers (1+ a) b))))

(define (sum-squares a b)

(if (> a b)

0

(+ (square a)

(sum-squares (1+ a) b))))

(define (pi-sum a b)

(if (> a b)

0

(+ (/ 1 (square a))

(pi-sum (+ a 2) b))))

Notice that the type of each procedure is:

(Sch-Num � Sch-Num) 7! Sch-Num



6.001, Fall Semester, 1996|Lecture Notes { Sept. 17, 1996 2

This pattern is capture by the following higher-order procedure (�ll in the blank as we go along):

(define sum

Notice the unusual time of this procedure:

F � Sch-Num � F � Sch-Num 7! Sch-Num

where F = Sch-Num 7! Sch-num.

Use sum to express the three procedures above as instances of the general idea of summing:

(define sum-integers1

(define sum-squares1

(define pi-sum1

Now use sum to perform numerical integration:

Z b

a

f = [f(a) + f(a+ dx) + � � �+ f(b)]dx



6.001, Fall Semester, 1996|Lecture Notes { Sept. 17, 1996 3

(define (integral f a b)

Computing square roots (again)

The square root of x is a �xed point of the transformation:

Method for �nding a �xed point of a function f (that is, a value of y such that f(y)=y)

� start with a guess for y

� keep applying f over and over until the result doesn't change very much

(define tolerance 0.0001)

(define (close? u v)

(< (abs (- u v)) tolerance))

(define (fixed-point f i-guess)

(define (try g)

(let ((next-guess (f g)))

(if (close? next-guess g)

next-guess

(try next-guess))))

(try i-guess))

We would like to compute the square root of x as a �xed point of the function y ! x
y
.

(define (sqrt x)

(fixed-point

(lambda (y) (/ x y))

1))

but this doesn't work, because it doesn't converge { it oscillates.

One way to control oscillations is to use average damping:

(define (average-damp f)

(lambda (x)

(average x (f x))))

Now we can de�ne sqrt as a �xed point, and the sequence will converge:



6.001, Fall Semester, 1996|Lecture Notes { Sept. 17, 1996 4

(define (sqrt x)

(fixed-point

(average-damp

(lambda (y) (/ x y)))

1))

This is the same PROCESS as the square root example from last time, but we have EXPRESSED

it di�erently.

The advantage of this is that we see square root more clearly as just one instance of a general idea.

Example: Find cube roots in exactly the same way, only use the transformation:

Newton's method is another general method:

To �nd a zero of a function f (that is, a value y such that f(y) = 0), �nd a �xed-point of the

function:

y 7! y �
f(y)

Df(y)

We can compute the square root of x by using Newton's Method to �nd a zero of the function

y ! y2 � x.

The following procedure takes a procedure f as argument, and returns the derivative of f, which is

itself a procedure:

(define deriv

(lambda (f)

(let ((dx 0.00001))

(lambda (x)

(/ (- (f (+ x dx))

(f x))

dx)))))

Example:

((deriv square) 10) ---> 20.00000999942131

Now that we have derivatives, we can express the function x! x�
f(x)

Df(x)
used in Newton's method:

x!
f(x+ dx)� f(x)

dx
x! x�

f(x)

Df(x)

(define (newton-transform f)

(lambda (y)

(- y

(/ (f y)

((deriv f) y)))))



6.001, Fall Semester, 1996|Lecture Notes { Sept. 17, 1996 5

Expressin Newton's Method as �nding a �xed point of the transformed function:

(define (newtons-method f guess)

(fixed-point

(newton-transform f)

guess))

Now we have two di�erent ways of expressing the square root computation:

As a �xed point process:

(define (sqrt x)

(fixed-point

(average-damp

(lambda (y) (/ x y)))

1))

As an application of Newton's method:

(define (sqrt x)

(newtons-method

(lambda (y) (- (square y) x))

1))

An even more general idea is to �nd the �xed point of a transformed function:

(define (fixed-point-of-transform f transform guess)

(fixed-points (transform f) guess))

This idea is general enough to express both methods for computing square roots:

(define (sqrt x)

(fixed-point-of-transform

(lambda (y) (- (square y) x))

newton-transform

1))

(define (sqrt x)

(fixed-point-of-transform

(lambda (y) (/ x y))

average-damp

1))

Rights and privileges of �rst class citizens (Christopher Strachey 1916{1975):

� May be named by variables

� May be passed as arguments to procedures

� May be returned as the results of procedures

� May be included in data structures


