
1
version August 12, 1996, 10:55 A.M.

MASSACHVSETTS INSTITVTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Fall Semester, 1996-1997

Problem Set 0

Getting Started

Issued: Wednesday, September 4

Due: Solutions should be sent by email to your tutor by Tuesday, September 10

In general, problem sets will be distributed in lecture on Tuesdays. This is a practice problem set,

which has two main purposes:

� to get you started interacting with the computer system you will be using throughout the

term,

� to stress the idea that working together in groups is a great way to learn material in this (or

any) course. As part of this exercise, your section instructor will be taking you into the lab,

where we would like you to work in pairs or triples. When you complete the problem set early

next week, you can either continue to work as a group, or �nish things up individually.

This zeroth problem set is di�erent from the ones for the rest of the term because there is no

written material to hand in. Later this week, we will be adjusting the registrar's assignment of

students into sections, so that by Friday you will be formally assigned to your section for the term.

After that occurs, we strongly recommend that you return to the lab, assemble your answers into

an Edwin bu�er, and send this bu�er by email to your tutor. Your tutor's email address will be

announced at recitation.

The purpose of the exercises below is to familiarize you with the 6.001 laboratory and programming

system. Spending a little time on simple mechanics now will save you a great deal of time over the

rest of the semester.

In general, to work on assignments, you will need a copy of the course notes and the lab manual

(Don't Panic), but you can start work on the exercises in this handout without that material.

1. Getting started in the lab

When you come to the lab, �nd a free computer and log in. (In general, you will do this using a


oppy disk, but we'll cover that in Problem Set 1.) You should log in as u6001.



6.001, Fall Semester, 1996-1997|Problem Set 0 2

For 6.001, you will use a text-editing system called Edwin, which is an Emacs-like editor. Even

if you are already familiar with Emacs, you should take some time now to run the Emacs/Edwin

tutorial. This can be invoked by typing C-h followed by t. You will probably get bored before you

�nish the tutorial. (It's too long, anyway.) But at least skim all the topics so you know what's

there. You'll need to gain reasonable facility with the editor in order to complete the exercises

below.

Evaluating expressions

The language in which you will be working this term is Scheme, a dialect of Lisp. You will be

hearing lots about this language next week, but you can already get some experience in using the

language here. All Scheme procedures are built out of expressions, with the simplest expressions

consisting of things like numbers. More complex arithmetic expressions consist of the name of

an arithmetic operator (things like +;�; �) followed by one or more other expressions, all of this

enclosed in parentheses.

After you have learned something about Edwin, go to the Scheme bu�er (i.e., the bu�er named

*scheme*).1 As with any bu�er, you can type Scheme expressions, or any other text into this

bu�er. What distinguishes the Scheme bu�er from other bu�ers is the fact that underlying this

bu�er is a Scheme evaluator, which you can ask to evaluate expressions, as explained in the section

of the Edwin tutorial entitled \Evaluating Scheme expressions."

Type in and evaluate (one by one) at least some of the expressions listed below. If the system gives

a response you do not understand, discuss this among your group to try to clarify your uncertainty.

25

-37

(- 8 9)

(> 3.7 4.4)

(- (if (> 3 4)

7

10)

(/ 16 10))

(* (- 25 10)

(+ 6 3))))

Observe that some of the examples printed above are indented and displayed over several lines for

readability. An expression may be typed on a single line or on several lines; the Scheme interpreter

ignores redundant spaces and carriage returns. It is to your advantage to format your work so that

you (and others) can read it easily. It is also helpful in detecting errors introduced by incorrectly

placed parentheses. For example the two expressions

1If you don't know how to do this, go back and learn more about Edwin.



6.001, Fall Semester, 1996-1997|Problem Set 0 3

(* 5 (+ 2 (/ 4 2) (/ 8 3)))

(* 5 (+ 2 (/ 4 2)) (/ 8 3))

look deceptively similar but have di�erent values. Properly indented, however, the di�erence is

obvious.

(* 5

(+ 2

(/ 4 2)

(/ 8 3)))

(* 5

(+ 2

(/ 4 2))

(/ 8 3))

Edwin provides several commands that \pretty-print" your code, e.g., indents lines to re
ect the

inherent structure of the Scheme expressions (see Sec. B.2.1 of Don't Panic.).2

Creating a �le

Since the Scheme bu�er will chronologically list all the expressions you evaluate, and since you

will generally have to try more than one version of the same procedure as part of the coding and

debugging process, it is usually better to keep your procedure de�nitions in a separate bu�er, rather

than to work only in the Scheme bu�er. You can save this other bu�er in a �le on a 
oppy disk so

you can split your lab work over more than one session. (The course notes package contains two


oppy disks.)

Chapter 5 of Don't Panic describes �les in more detail. The basic idea is to create another bu�er,

into which you can type your code, and later save that bu�er in a disk �le. You do this by typing

C-x C-f �lename. If you already have a bu�er open for that �le Edwin simply switches you into

this bu�er. Otherwise, Edwin will create a new bu�er for the �le. If you give the system a name

that has not yet been used, with an extension of .scm, Edwin will automatically create a new bu�er

with that �le name, in scheme mode. In a Scheme-mode bu�er some editing commands treat text

as code, for example, typing C-j at the end of a line will move you to the next line with appropriate

indentation.

Once you are ready to transfer your procedures to Scheme, you can use any of several commands:

M-z to evaluate the current de�nition, ctrl-x ctrl-e to evaluate the expression preceding the

cursor, M-o to evaluate the entire bu�er, or by marking a region and using M-x eval-region. Each

of these commands will cause the Scheme evaluator to evaluate the appropriate set of expressions

(usually de�nitions). By returning to the *scheme* bu�er, you can now use these expressions.

2Make a habit of typing ctrl-j at the end of a line, instead of return, when you enter Scheme expressions, so

that the cursor will automatically indents to the right place.



6.001, Fall Semester, 1996-1997|Problem Set 0 4

2. Exploring the system

The following exercises are meant to help you practice editing, and using on-line documentation.

Exercise 1: Practice with the editor Copy the results of evaluating some of the expressions

in Section 1 from the *scheme* bu�er into an answer bu�er.

Exercise 2: More practice with the editor Find the Free Software Foundation copyright

notice at the end of the Edwin tutorial. Copy it into the answer bu�er.

Exercise 3: Learning to use Info Start up the info program with the Edwin command M-x

info. Info is a directory of useful information. You select a topic from the menu, by typing m

followed by the name of the topic. You can type a few characters that begin the topic name, and

then type a space, and Edwin will complete the name. One of the info options (type h) gives you

a brief tutorial in how to use the program. Use info to �nd the cost of a 12-inch cheese pizza from

Pizza Ring, and copy this to the answer bu�er. (Extra credit: Is the price listed in the �le still

correct?)

Exercise 4: Hacker Jargon The info Jargon entry is a collection of hacker terms that was

eventually published in 1983 as the book The Hacker's Dictionary. The New Jargon info entry is

an expanded version that was published in 1991 by MIT Press as The New Hacker's Dictionary.

The old Jargon �le is structured as an info �le, with submenus; the new version is a single text

�le, which you can search. Find the de�nition of \terminal brain death" from the new jargon �le,

and �nd the de�nition of \Phase of the Moon" from either jargon �le. Include these in the answer

bu�er.

Exercise 5: Scheme documentation The Scheme info entry is an on-line copy of the Scheme

reference manual that is distributed with the notes. Find the description of \identi�ers" in the

documentation. What is the longest identi�er in the list of example identi�ers?

Exercise 6: Getting information at MIT The Edwin command M-x shell will create a Unix

shell bu�er, which you can use to run various Unix programs. One of the more interesting ones is

finger. For example, typing

finger name@mit

will show you information from the MIT directory. Find out who the following people are at MIT

and what they do: Joel Moses, Michael C. Behnke, Rosalind Williams.

Exercise 7: Getting information from around the world You can also use the �nger

program to query computers on the Internet, all over the world. You can �nger a particular name

at some location, or just �nger the location (e.g., finger @mit.edu) to get general information.

Try �ngering some of the following places:



6.001, Fall Semester, 1996-1997|Problem Set 0 5

� cs.berkeley.edu|a computer run by the computer science department at UC Berkeley

� idt.unit.no|a computer at the Norwegian Institute of Technology, a part of the University

of Trondheim, Norway.

� whitehouse.gov|the White House

See what else you can �nd. Include some piece of this in your answer �le.

Turning in your answers

The section on \Feedback" in the Don't Panic manual describes how to send Email from the 6.001

lab. Send your answer bu�er to your tutor. Do this by starting a mail message and using the

Edwin M-x insert-buffer command. Don't forget to include a reply email address (or else put

your name in the message) so your tutor will know that the message is coming from you.


