
1
version August 16, 1996, 9:28 A.M.

MASSACHVSETTS INSTITVTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Fall Semester, 1996-97

Problem Set 1

Programming in Scheme

Issued: Thursday, September 5, 1996

Due: Friday, September 13, in recitation.

Tutorial preparation: None for this week.

Reading Assignment: Sections 1.1 and 1.2 of SCIP.

Introduction

Every homework assignment contains two kinds of assignments:

� Written problems: Your solutions to assigned problems should be handed in at recitation,

late work will not be accepted. Begin working on the problems now. Assigned problems

include both pre-laboratory exercises that should be worked at home and laboratory exercises

that require interaction with a computer that interprets Scheme. Laboratory exercises should

be read and understood before coming to lab: your e�orts in lab will be more e�ective if you

have a good understanding of what is required and have developed an initial plan for working

the lab exercises. It is generally much more e�cient to test, debug, and run a program that

you have planned before coming into the lab than to try to do the planning \online". The

experience of students who have taken 6.001 in previous terms has consistently indicated that

failing to prepare ahead for laboratory assignments generally ensures that the assignments

take much longer than necessary. Also, it is much to your advantage to start the lab work

early, rather than waiting until just before it is due.

� Tutorial preparation: In tutorial you will be asked to discuss questions raised in the assign-

ment. Your tutor may choose not to cover every question every week, but you should be

prepared to discuss them. You need not write up formal answers to these, other than making

notes for yourself, if you choose. These tutorial questions, or ones very similar to them, may

also appear on quizzes this semester. Your tutor will also review your written homework and

discuss the problems with you.

To work on this assignment, you will need a copy of the text and copy of the lab manual package.

To obtain the latter, follow the instructions given in the General Information memo.

6.001, Fall Semester, 1996-97|Problem Set 1 2

1. Getting started in the lab

This section is a repeat of material you should have seen in Problem Set 0. We are

repeating it here for those of you who may have joined the class late. If you have

already done this material for Problem Set 0, you may move straight to Section 2.

When you come to the lab, �nd a free computer and log in. You should log in as u6001. If

necessary, initialize1 one of your oppy disks, as described in Chapter 3 of the Don't Panic manual.

You should also write your name and address on a label a�xed to the oppy disk. Floppy disks

are notoriously unreliable storage media, so it is a good idea to copy your data onto a second disk

(this is used only for this purpose) when you have completed each laboratory assignment. See the

description of how to copy disks in the Don't Panic manual, and do not hesitate to ask the lab

assistants for help.

To work on assignments you will need a copy of the course notes and the lab manual (Don't Panic),

but you can work the �nger exercises in this handout without that material. The purpose of the

�nger exercises is to familiarize you with the 6.001 laboratory and programming system. Spending

a little time on simple mechanics now will save you a great deal of time over the rest of the semester.

Most of your interactions with the system will be through a text editing system called Edwin, which

is an Emacs-like editor. If you are not familiar with such editors, you may �nd it useful to work

your way through the on-line Edwin/Emacs tutorial. This can be invoked via C-h followed by T.2

The tutorial is fairly long, and you may get bored before you �nish. Try to skim all the topics so

you know what's there. You'll need to gain reasonable facility with the editor in order to complete

the exercises below.

Evaluating expressions

The language in which you will be working this term is Scheme, a dialect of Lisp. You will be

hearing lots about this language next week, but you can already get some experience in using the

language here. All Scheme procedures are built out of expressions, with the simplest expressions

consisting of things like numbers. More complex arithmetic expressions consist of the name of

an arithmetic operator (things like +;�; �) followed by one or more other expressions, all of this

enclosed in parentheses.

After you have learned something about Edwin, go to the Scheme bu�er (i.e., the bu�er named

scheme).3 As with any bu�er, you can type Scheme expressions, or any other text into this

bu�er. What distinguishes the Scheme bu�er from other bu�ers is the fact that underlying this

bu�er is a Scheme evaluator, which you can ask to evaluate expressions, as explained in the section

of the Edwin tutorial entitled \Evaluating Scheme expressions."

Type in and evaluate (one by one) at least some of the expressions listed below. If the system gives

a response you do not understand, discuss this among your group or with a lab TA to try to clarify

your uncertainty.

1The disks provided by the EECS Instrument Room have already been initialized.
2C-h is entered by holding the control key down while typing h.
3If you don't know how to do this, go back and learn more about Edwin.

6.001, Fall Semester, 1996-97|Problem Set 1 3

25

-37

(- 8 9)

(> 3.7 4.4)

(- (if (> 3 4)

7

10)

(/ 16 10))

(* (- 25 10)

(+ 6 3))))

Observe that some of the examples printed above are indented and displayed over several lines for

readability. An expression may be typed on a single line or on several lines; the Scheme interpreter

ignores redundant spaces and carriage returns. It is to your advantage to format your work so that

you (and others) can read it easily. It is also helpful in detecting errors introduced by incorrectly

placed parentheses. For example the two expressions

(* 5 (+ 2 (/ 4 2) (/ 8 3)))

(* 5 (+ 2 (/ 4 2)) (/ 8 3))

look deceptively similar but have di�erent values. Properly indented, however, the di�erence is

obvious.

(* 5

(+ 2

(/ 4 2)

(/ 8 3)))

(* 5

(+ 2

(/ 4 2))

(/ 8 3))

Edwin provides several commands that \pretty-print" your code, indenting lines to reect the

inherent structure of the Scheme expressions (see Sec. B.2.1 of Don't Panic.). Make a habit of

typing ctrl-j at the end of a line, instead of return, when you enter Scheme expressions, so that

the automatic indentation takes place.

Creating a �le

Since the Scheme bu�er will chronologically list all the expressions you evaluate, and since you

will generally have to try more than one version of the same procedure as part of the coding and

6.001, Fall Semester, 1996-97|Problem Set 1 4

debugging process, it is usually better to keep your procedure de�nitions in a separate bu�er, rather

than to work only in the Scheme bu�er. You can save this other bu�er in a �le on a oppy disk so

you can split your lab work over more than one session. (The course notes package contains two

oppy disks.)

Chapter 5 of Don't Panic describes �les in more detail. The basic idea is to create another bu�er,

into which you can type your code, and later save that bu�er in a disk �le. You do this by typing

C-x C-f �lename. If you already have a bu�er open for that �le Edwin simply switches you into

this bu�er. Otherwise, Edwin will create a new bu�er for the �le. If you give the system a name

that has not yet been used, with an extension of .scm, Edwin will automatically create a new bu�er

with that �le name, in scheme mode. In a Scheme-mode bu�er some editing commands treat text

as code, for example, typing C-j at the end of a line will move you to the next line with appropriate

indentation.

Once you are ready to transfer your procedures to Scheme, you can use any of several commands:

M-z to evaluate the current de�nition, ctrl-x ctrl-e to evaluate the expression preceding the

cursor, M-o to evaluate the entire bu�er, or by marking a region and using M-x eval-region. Each

of these commands will cause the Scheme evaluator to evaluate the appropriate set of expressions

(usually de�nitions). By returning to the *scheme* bu�er, you can now use these expressions.

2. Debugging

During the semester, you may need to correct errors in your programs. Often these errors become

apparent only when you try to run the programs. Correcting errors (\bugs") under these conditions

is called \debugging". On February 20 at 7PM (room to be announced) we will be o�ering an

optional lecture on debugging. But some basic ideas can help your programming activities now.

Use the Edwin M-x load-problem-set command to load the code for problem set 1. This will

load de�nitions of the following three procedures p1, p2 and p3:

(define p1

(lambda (x y)

(+ (p2 x y) (p3 x y))))

(define p2

(lambda (z w) (* z w)))

(define p3

(lambda (a b) (+ (p2 a) (p2 b))))

A very simple technique called \tracing" can help you understand how your procedures operate.

When you evaluate the expression trace p2 you cause procedure p2 to report the values of its

arguments when it is called and the value it returns. Thus in evaluating (p2 3 4) you would see

the following on your screen.

(p2 3 4)

[Entering #[compound-procedure 1 p2]

6.001, Fall Semester, 1996-97|Problem Set 1 5

Args: 3

4]

[12

<== #[compound-procedure 1 p2]

Args: 3

4]

;Value: 12

When you are satis�ed that you understand how p2 works you can evaluate (untrace p2) to stop

the reporting process. Tracing is a simple way to get help you detecting errors in the logic of

your program design, calling calling procedures with the wrong arguments, or calling the wrong

procedures. Moreover, there is no modi�cation to the code of the procedure being traced (which

can, by itself, introduce errors). The Don't Panic manual describes the error procedure that can

be used to display similar information on a conditional basis, such as when the wrong type of

argument is passed to a procedure.

A more powerful way to get help with programming errors is to use the Scheme debugger itself.

The following tutorial is intended to demonstrate the basic elements of debugging. Additional

information about the debugger can be found in Don't Panic, and by typing ? in the debugger.

In the Scheme bu�er, evaluate the expression (p1 1 2). This should signal an error, with the

message:

;The procedure #[compound-procedure P2] has been called with 1

argument

;it requires exactly 2 arguments.

;Type D to debug error, Q to quit back to REP loop:

Don't panic. Beginners have a tendency, when they encounter an error, to quickly type q, often

without even reading the error message. Then they stare at their code in the editor trying to

discover what caused the problem. Indeed, this example is simple enough so that you probably can

�nd the bug by just reading the code. Instead, however, let's see how Scheme can be coaxed into

producing some helpful information about the error.

First of all, there is the error message itself. It tells you that the error was caused by a procedure

being called with one argument, which is the wrong number of arguments for that procedure.

Unfortunately, the error message alone doesn't say where in the code the error occurred. In order

to �nd out more, you need to use the debugger. To do this type D to start the debugger.

Using the debugger

The debugger also allows you to examinine pieces of the execution in progress, in order to learn

more about what may have caused the error. When you start the debugger, it will create a new

window showing two bu�ers. The top bu�er should look like this.

COMMANDS: ? - Help q - Quit Debugger e - Environment browser

6.001, Fall Semester, 1996-97|Problem Set 1 6

This is a debugger buffer:

Lines identify stack frames, most recent first.

Sx means frame is in subproblem number x

Ry means frame is reduction number y

The buffer below describes the current subproblem or reduction.

The *ERROR* that started the debugger is:

The procedure #[compound-procedure 119 p2] has been called with 1

argument;

it requires exactly 2 arguments.

>S0 (#[compound-procedure 119 p2] 2)

R0 (p2 b)

S1 (+ (p2 a) #(p2 b)#)

R0 (+ (p2 a) (p2 b))

R1 (p3 x y)

S2 (+ (p2 x y) #(p3 x y)#)

R0 (+ (p2 x y) (p3 x y))

R1 (p1 1 2)

--more--

You can select a frame by clicking on it with the mouse or by using the ordinary cursor line-motion

commands to move from line to line. Notice that the information bottom bu�er changes as the

selected line changes.

The frames in the list in the top bu�er represent the steps in the evaluation of the expression.

There are two kinds of steps|subproblems and reductions. This idea will be discussed in lecture

on September 21. For now, you should think of a reduction step as transforming an expression

into \more elementary" form, and think of a subproblem as picking out a piece of a compound

expression to work on.

So, starting at the bottom of the list and working upwards, we see (p1 1 2), which is the expression

we tried to evaluate. The next line up indicates that (p1 1 2) reduces to (+ (p2 x y) (p3 x y)).

Above that, we see that in order to evaluate this expression the interpreter chose to work on the

subproblem (p3 x y), and so on, moving upwards until we reach the error: the call to (p2 b)

from within the procedure p3 has only one argument, and p2 requires two arguments.4

Take a moment to examine the other debugger information (which will come in handy as your
programs become more complex). Speci�cally, in the top bu�er, select the line

>S2 (+ (p2 x y) #(p3 x y)#)

The bottom bu�er should now look like this:

4Notice that the call that produced the error was (p2 b), and that (p2 a) would have also given an error. This

indicates that in this case Scheme was evaluating the arguments to + in right-to-left order, which is something you

may not have expected. You should never write code that depends for its correct execution on the order of evaluation

of the arguments in a combination. The Scheme system does not guarantee that any particular order will be followed,

nor even that this order will be the same each time a combination is evaluated.

6.001, Fall Semester, 1996-97|Problem Set 1 7

SUBPROBLEM LEVEL: 2

Expression (from stack):

Subproblem being executed highlighted.

(+ (p2 x y) (p3 x y))

ENVIRONMENT named: (user)

p1 = #[compound-procedure 31 p1]

p3 = #[compound-procedure 32 p3]

p2 = #[compound-procedure 27 p2]

==> ENVIRONMENT created by the procedure: P1

x = 1

y = 2

;EVALUATION may occur below in the environment of the selected

frame.

The information here is in three parts. The �rst shows the expression again, with the subproblem
being worked on. The next major part of the display shows information about the environments.
We'll have a lot more to say about environments later in the course, but, for now, notice the line

==> ENVIRONMENT created by the procedure: P1

This indicates that the evaluation of the current expression is within procedure p1. Also we �nd

the environment has two bindings that specify the particular values of x and y referred to in the

expression, namely x = 1 and y = 2. At the bottom of the description bu�er is an area where you

can evaluate expressions in this environment (which is often useful in debugging).

Before quitting the debugger try one �nal experiment (you may have already done this). Continue

to scroll down through the stack past the line: R1 (p1 1 2) (you can also click the mouse on the

line --more-- to show the next subproblem). You will then see additional frames that various

complicated expressions. What you are looking at is some of the guts of the Scheme system|the

part shown here is a piece of the interpreter's read-eval-print program. In general, backing up from

any error will eventually land you in the guts of the system. (Yes: almost all of the system is itself

a Scheme program.)

You can type q to return to the Scheme top level interpreter.

3. Formal Assignment

Assignments will usually contain both Exercises and Laboratory Work.

Exercises

You should work the following exercises before going to lab. This will require that you have mastered

the basic skills required for the main assignment. Although you can use a Scheme interpreter to

check your work, you should not postpone working the exercises until you go to lab. Write up your

solutions to the exercises and include them as part of your homework.

6.001, Fall Semester, 1996-97|Problem Set 1 8

Exercise 1 Work Exercise 1.1 of the test. You should determine the answers to this exercise

without the help of a computer, then check your answers in lab.

Exercise 2. Work Exercise 1.2 in SICP.

Exercise 3. Work Exercise 1.5 in SICP.

Exercise 3. Work Exercise 1.6 in SICP.

Laboratory Work: The New York Sines { All the digits that are �t to print

Now that you've gained some experience with Scheme, you should be ready to work on the pro-

gramming assignment. When you are �nished in the lab, you should write up and hand in the

numbered problems below. You may want to include listings and/or pictures in your write-up.

Chapter 1 of the Don't Panic manual explains how to use the lab printers.

Subsequent laboratory assignments will include large amounts of code, which will be loaded auto-

matically into an edit bu�er when you begin work on the assignment. This time, however, you are

to type the code yourself, to get practice with the editor.

Scheme, like most programming languages, comes with a set of procedures prede�ned, or \built-in",

especially procedures for doing numerical computations. Thus, for example, the Scheme procedures

sin and cos will return the sine and cosine of a single argument which speci�es an angle in radians.

In this problem set, we are going to explore ways of building such procedures, in particular the sine

function, using simpler pieces.

The �rst way we will do this is to use the following in�nite product de�nition:

sin(x) = x
Q
1

k=1

h
1�

�
x

k�

�2i
= x

h
1�

�
x

�

�2i h
1�

�
x

2�

�2i h
1�

�
x

3�

�2i
: : :

Problem 1 We can use this idea to write a procedure to estimate the sine function. Below is an

outline of the procedure my-sine-prod which should take two arguments, an angle in radians x,

and a number of terms n. We will assume that n � 1, and n refers to the number of terms in [�]'s

that will be included in the product. In other words, if n = 1 we want the procedure to compute

x

"
1�

�
x

�

�2
#

and if n = 3, we want the procedure to compute

x

"
1�

�
x

�

�2
#"

1�

�
x

2�

�2
"

1�

�
x

3�

�2
#
:

6.001, Fall Semester, 1996-97|Problem Set 1 9

Here is the outline. Normally, we will give you such templates automatically loaded, but for this

�rst time, we ask you to type it in to get the practice using the system.

(define square (lambda (x) (* x x)))

(define my-sine-prod

(lambda (x n)

(define helper

(lambda (x m)

(cond ((> m n) 1)

(else

;; need to fill this in

))))

(* x (helper x 1))))

You should be able to complete the procedure by modeling it after the recursive procedures you

saw in lecture or in the text. Turn in a listing of your de�nition.

Problem 2 Try out your procedure on a set of test values. Turn in a listing of the tests you run.

Problem 3 We should be able to carefully examine the behavior of our procedure, especially as

we increase the number of terms in the product. Write a procedure walk-through-prod which

takes two arguments, an angle in radians, and a maximum number of terms to include. This

procedure should print out a sequences of values showing the approximation to sine of the angle

when including 1 term, 2 terms, ..., n terms. For example, we would expect:

(define pi 3.1415927)

(walk-through-prod (/ pi 2) 5)

1.1780972625

1.10446618359375

1.0737965673828124

1.057008652267456

1.0464385657447812

;Value: #t

Write such a procedure. Turn in a copy of your listing. Use your procedure to see how many terms

you need to include to approximate sin 0 to an accuracy of 0.05. What about sin �

2
to an accuracy

of 0.05, to an accuracy of 0.01, to an accuracy of 0.005?

Problem 4 We know that sin �

2
= 1, and in fact, sin (4k+1)�

2
= 1 for any positive integer k. We

would like to �nd out how many terms in the product expansion for sin we need to include to get a

good approximation, as we make the angle bigger. Write a procedure test-prod which takes two

arguments, a value k and a limit �. This procedure should return the miminum number of terms

needed to bring the approximation for sin (4k+1)�

2
to within � of the correct answer of 1. Turn in

a listing of your procedure. How many terms are needed to approximate sin �

2
to within 0:05, to

within 0:01? What about sin 5�
2
to within 0:05? What about sin 9�

2
to within 0:05?

6.001, Fall Semester, 1996-97|Problem Set 1 10

You can see that this approximation can be quite slow to converge, that is, we need a lot of terms.

So we want to look at a second way of approximating the sine function.

The second way we will do this is to use a Taylor series approximation. Any function f(x) can

be approximated by choosing a point x0 about which to perform the approximation, and using a

series of values of increasingly larger derivatives of the function:

f(x) � f(x0) +
(x� x0)

1!
f 0(x0) +

(x� x0)
2

2!
f 00(x0) +

(x� x0)
3

3!
f 000(x0) + : : :

If we want to get an approximation for f(x) = sin(x) it is convenient to choose x0 = 0 so that

df(x)=dx = cos(x) which at x0 = 0 has the value 1, d2f(x)=dx2 = � sin(x) which at x0 = 0 has the

value 0, 3df(x)=dx3 = � cos(x) which at x0 = 0 has the value �1, d4f(x)=dx4 = sin(x) which at

x0 = 0 has the value 0, and then the pattern repeats.

This means

sin(x) � x�
x3

3!
+

x5

5!
� : : :

It is convenient to rewrite this as a sequence of continued products:

sin(x) � x

"
1�

x2

3 � 2

"
1�

x2

5 � 4

"
1�

x2

7 � 6
: : :

###

Problem 5 Write a procedure my-sine-taylor which takes an angle in radians and a number

of terms n as arguments, and uses this idea to approximate the sine. Turn in a listing of your

procedure and some examples of testing it.

Problem 6 Similar to Problem 4, write a procedure test-taylor that allows us to determine

how many terms are needed to approximate this version of sine. How many terms are needed to

approximate sin �

2
to within 0:05, to within 0:01? What about sin 5�

2
to within 0:05? What about

sin 9�
2
to within 0:05?

We still have fairly slow methods for approximating sines of large arguments. So here is a third

way to do this.

A common technique in creating computational methods is to reduce a problem to simpler versions

of the same problem. In the case of sine functions, we have noticed that our earlier methods work

well for small angles, but not so well for larger ones. So if we could reduce the computation of sine

of a large argument to sines of smaller ones, we would be in better shape. Well, we can using the

following decomposition:

sin(x) = sin(x
3
+ 2x

3
)

= sin x

3
cos 2x

3
+ cos x

3
sin 2x

3

6.001, Fall Semester, 1996-97|Problem Set 1 11

= sin x

3

�
cos2 x

3
� sin2 x

3

�
+ cos x

3

�
2 sin x

3
cos x

3

�
= 3 sin x

3
cos2 x

3
� sin3 x

3

= 3 sin x

3
� 4 sin3 x

3

Problem 7 Now we can use this idea to write a new approximation to the sine function, which

we will call reduce-sine. The idea is that if the �rst argument to reduce-sine, which is the angle,

is less than a second argument epsilon, then we will use my-sine-prod to compute the answer,

using the supplied angle and the third argument n which speci�es the number of terms to use in the

product expansion. Otherwise, we will use the above formula to recursively reduce reduce-sine

to applications of reduce-sine with smaller arguments.

Write such a procedure, and turn in a copy of your code. Also show it being applied to some test

arguments. Try it on 2:5� with � = 0:05 using 5 terms in the product, on 8:5�, on 20:5�, on 200:5�.

Compare the answers you get with the approximations you get using my-sine-prod directly on

these arguments.

Problem 8 It turns out we can play the same game with other approximations. For example,

the following holds:

sin x = 16 sin5
x

5
� 20 sin3

x

5
+ 5 sin

x

5

Use this to write a second procedure new-reduce-sine similar to the previous problem. Turn in a

copy of your listing.

Problem 9 Now, let's compare the two. Complete the following table, using n = 5 for the

number of terms and � = 0:05 in both cases:
angle reduce-sine new-reduce-sine

0:5�

2:5�

10:5�

20:5�

100:5�

Which version is better?

