
1
version September 8, 1996, 6:50 P.M.

MASSACHVSETTS INSTITVTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Fall Semester, 1996-1997

Problem Set 2

Graphing with Higher-order Procedures

Issued: Tuesday, 10 September

Due: Friday, 20 September

Tutorial preparation for: Week of September 16

Reading:

� Course notes: read 1.3

� code �les utils.scm, curves.scm (attached to this handout)

One of the things that makes Scheme di�erent from other common programming languages is the

ability to operate with higher-order procedures, namely, procedures that manipulate and generate

other procedures. This problem set will give you extensive practice with higher-order procedures,

in the context of a language for graphing two-dimensional curves and other shapes. Sections 1 and

2 give some background on the essential ideas, with Pre-Lab and Lab exercises included. Section

3, the actual lab assignment, describes the graphics language and gives applications to generating

fractal designs.

Tutorial Preparation:

Tutorial exercise 1: Do Exercise 1.30 in the course notes.

Tutorial exercise 2: Do Exercise 1.31 in the course notes.

Tutorial exercise 3: Do Exercise 1.32 in the course notes.

1. Procedure Types and Procedure Constructors

In this assignment we use many procedures which may be applied to many di�erent types of

arguments and may return di�erent types of values. To keep track of this, it will be helpful to have

some simple notation to describe types of Scheme values.



6.001, Fall Semester, 1996-1997|Problem Set 2 2

Two basic types of values are Sch-Num, the Scheme numbers such as 3, -4.2, 6.931479453e89, and

Sch-Bool, the truth values #t,#f. The procedure square may be applied to a Sch-Num and will

return another Sch-Num. We indicate this with the type notation:

square : Sch-Num ! Sch-Num

If f and g are procedures of type Sch-Num! Sch-Num, then we may compose them:

(define (compose f g)

(lambda (x)

(f (g x))))

Thus, for example (compose square log) is the procedure of type Sch-Num ! Sch-Num that

returns the square of the logarithm of its argument, while (compose log square) returns the

logarithm of the square of its argument:

(log 2)

;Value: .6931471805599453

((compose square log) 2)

;Value: .4804530139182014

((compose log square) 2)

;Value: 1.3862943611198906

As we have used it above, the procedure compose takes as arguments two procedures of type

F = Sch-Num ! Sch-Num, and returns another such procedure. We indicate this with the

notation:

compose : (F; F )! F

Just as squaring a number multiplies the number by itself, thrice of a function composes the

function three times. That is, ((thrice f) n) will return the same number as (f(f(f n))):

(define (thrice f)

(compose (compose f f) f))

((thrice square) 3)

;Value: 6561

(square (square (square 3)))

;Value: 6561

As used above, thrice is of type (F ! F ). That is, it takes as input a function from numbers to

numbers and returns the same kind of function. But thrice will actually work for other kinds of

input functions. It is enough for the input function to have a type of the form T ! T , where T

may be any type. So more generally, we can write

thrice : (T ! T )! (T ! T )

Composition, like multiplication, may be iterated. Consider the following:



6.001, Fall Semester, 1996-1997|Problem Set 2 3

(define (identity x) x)

(define (repeated f n)

(if (= n 0)

identity

(compose f (repeated f (- n 1)))))

((repeated sin 5) 3.1)

;Value: 4.1532801333692235e-2

(sin(sin(sin(sin(sin 3.1)))))

;Value: 4.1532801333692235e-2

Note that repeated can be characterized as having the following type:

repeated : ((T ! T ); Sch-Nonneg-Int)! (T ! T )

or, if you prefer:

repeated : (T 0
; Sch-Nonneg-Int)! T

0

where T 0 = (T ! T ).

Pre-Lab exercise 1.A The type of thrice is of the form (T 0 ! T
0) (where T 0 happens to equal

(T ! T )), so we can legitimately use thrice as an input to thrice!

For what value of n will (((thrice thrice) f) 0) return the same value1 as ((repeated f n)

0)?

See if you can now predict what will happen when the following expressions are evaluated. Briey

explain what goes on in each case.

1. (((thrice thrice) (lambda (x) (+ 1 x))) 6)

2. (((thrice thrice) identity) compose)

3. (((thrice thrice) square) 1)

4. (((thrice thrice) square) 2).

Lab exercise 1.B When you get to the Lab, test your predictions. (Warning: Before you do

this, make sure you understand how to interrupt a Scheme evaluation.)

1\Sameness" of procedure values is a sticky issue which we don't want to get into here. We can avoid it by

assuming that f is bound to a value of type F , so evaluation of (((thrice thrice) f) 0) will return a number.



6.001, Fall Semester, 1996-1997|Problem Set 2 4

2. Curves as Procedures and Data

We're going to develop a language for de�ning and drawing planar curves. We'd like to plot points,

construct graphs of functions, transform curves by scaling and rotating, and so on. One of the key

ideas that we'll stress throughout 6.001 is that a well-designed language has parts that combine to

make new parts that themselves can be combined. This property is called closure.

A planar curve in \parametric form" can be described mathematically as a function from parameter

values to points in the plane. For example, we could describe the unit-circle as the function taking

t to (cos 2�t; sin 2�t) where t ranges over the unit interval [0; 1]. In Scheme, we let Unit-Interval be

the type of Scheme-numbers between 0 and 1, and we represent curves by procedures of Scheme

type Curve, where

Curve = Unit-Interval ! Point

and Point is some representation of pairs of Sch-Num's.

To work with Point, we need a constructor, make-point, which constructs Point's from Sch-Num's,

and selectors, x-of and y-of, for getting the x and y coordinates of a Point. We require only that

the constructors and selectors obey the rules

(x-of (make-pointnm)) = n

(y-of (make-pointnm)) = m

for all Sch-Num's m;n. Here is one way to do this (we'll learn several other, better ways, in two

weeks.)

(define (make-point x y)

(lambda (bit)

(if (zero? bit) x y)))

(define (x-of point)

(point 0))

(define (y-of point)

(point 1))

make-point : (Sch-Num; Sch-Num)! Point;

x-of; y-of : Point! Sch-Num:

For example, we can de�ne the Curve unit-circle and the Curve unit-line (along the x-axis):

(define (unit-circle t)

(make-point (sin (* 2pi t))

(cos (* 2pi t))))

(define (unit-line-at y)

(lambda (t) (make-point t y)))

(define unit-line (unit-line-at 0))



6.001, Fall Semester, 1996-1997|Problem Set 2 5

Note that we are already making a conceptual shift in our thinking. Here, a curve is not a geometric

set of points, rather it is a procedure for taking values drawn from the unit interval, and generating

the corresponding point. The key is that a curve is a procedure!

Pre-Lab exercise 2:

1. What is the type of unit-line-at?

2. De�ne a procedure vertical-line with two arguments, a point and a length, and returns

a vertical line of that length beginning at the point. By what we have discussed above,

vertical-line should return a curve (hence a procedure) that takes as input a parameter

along the unit line (as do all curves) and returns the appropriate point along the line.

3. What is the type of vertical-line?

In addition to the direct construction of Curve's such as unit-circle or unit-line, we can use

elementary Cartesian geometry in designing Scheme procedures which operate on Curve's. For

example, the mapping (x; y) �! (�y; x) rotates the plane by �=2, so

(define (rotate-pi/2 curve)

(lambda (t)

(let ((ct (curve t)))

(make-point

(- (y-of ct))

(x-of ct)))))

de�nes a procedure which takes a curve and transforms it into another, rotated, curve. The type

of rotate-pi/2 is

Curve-Transform = Curve! Curve

and remember that the type

Curve = Unit-Interval ! Point:

Thus, a curve transform is a procedure that converts an input procedure to a new procedure, i.e., a

curve transform is a higher order procedure. Note in general that having a framework for describing

types enables us to reason about procedures, e.g., knowing the type of an argument and the desired

type of the output provides constraints on what must be done within a procedure to execute the

desired transformation.

Pre-Lab exercise 3: Write a de�nition of a Curve-Transform reflect-through-y-axis, which

turns a curve into its mirror image.

We have provided a variety of other procedure Curve-Transform's and procedures which construct

Curve-Transform's in the �le curves.scm. For example,

� translate returns a Curve-Transform which rigidly moves a curve given distances along the

x and y axes,



6.001, Fall Semester, 1996-1997|Problem Set 2 6

� scale-x-y returns a Curve-Transform which stretches a curve along the x and y coordinates

by given scale factors, and

� rotate-around-origin returns a Curve-Transform which rotates a curve by a given number

of radians.

A convenient, if somewhat more complicated, Curve-Transform is put-in-standard-position.

We'll say a curve is in standard position if its start and end points are the same as the unit-line,

namely it starts at the origin, (0; 0), and ends at the point (1; 0). We can put any curve whose start

and endpoints are not the same into standard position by rigidly translating it so its starting point

is at the origin, then rotating it about the origin to put its endpoint on the x axis, then scaling it

to put the endpoint at (1; 0):

(define (put-in-standard-position curve)

(let* ((start-point (curve 0))

(curve-started-at-origin

((translate (- (x-of start-point))

(- (y-of start-point)))

curve))

(new-end-point (curve-started-at-origin 1))

(theta (atan (y-of new-end-point) (x-of new-end-point)))

(curve-ended-at-x-axis

((rotate-around-origin (- theta)) curve-started-at-origin))

(end-point-on-x-axis (x-of (curve-ended-at-x-axis 1))))

((scale (/ 1 end-point-on-x-axis)) curve-ended-at-x-axis)))

It is useful to have operations which combine curves into new ones. We let Binary-Transform be

the type of binary operations on curves,

Binary-Transform = (Curve;Curve)! Curve:

The procedure connect-rigidly is a simple Binary-Transform. Evaluation of (connect-rigidly

curve1 curve2) returns a curve consisting of curve1 followed by curve2; the starting point of the

curve returned by (connect-rigidly curve1 curve2) is the same as that of curve1 and the end

point is the same as that of curve2.

(define (connect-rigidly curve1 curve2)

(lambda (t)

(if (< t (/ 1 2))

(curve1 (* 2 t))

(curve2 (- (* 2 t) 1)))))

Pre-Lab exercise 4: There is another, possibly more natural, way of connecting curves. The

curve returned by (connect-ends curve1 curve2) consists of a copy of curve1 followed by a copy

of curve2 after it has been rigidly translated so its starting point coincides with the end point of

curve1.

Write a de�nition of the Binary-Transform connect-ends. Think carefully about the types of the

di�erent procedures you use, as this will help you decide how to stitch together the di�erent kinds

of operations you need.



6.001, Fall Semester, 1996-1997|Problem Set 2 7

3. To do in Lab: Drawing Curves

Use M-x load-problem-set to load the code for problem set 2. This will create three graphics

windows called g1, g2 and g3. The window coordinates go from 0 to 1 in both x and y with (0; 0)

at the lower left.

A drawing procedure takes a curve argument and automagically displays points on the curve in a

window2. We've provided several procedures that take a window (for example g1) and a number

of points, and return a drawing procedure, namely,

� draw-points-on,

� draw-connected,

� draw-points-squeezed-to-window, and

� draw-connected-squeezed-to-window.

Lab exercise 5: Apply (draw-connected g1 200) to unit-circle, and (draw-connected g2

200) to alternative-unit-circle. Can you see a di�erence? Now try using draw-points-on

instead of draw-connected. Also try draw-points-squeezed-to-window. Print out the resulting

�gures.

Fractal Curves

To show o� the power of our drawing language, let's use it to explore fractal curves. Fractals have

striking mathematical properties.3 Fractals have received a lot of attention over the past few years,

partly because they tend to arise in the theory of nonlinear di�erential equations, but also because

they are pretty, and their �nite approximations can be easily generated with recursive computer

programs.

For example, Bill Gosper4 discovered that the in�nite repetition of a very simple process creates

a rather beautiful image, now called the Gosper C Curve. At each step of this process there is an

approximation to the Gosper curve. The next approximation is obtained by adjoining two scaled

copies of the current approximation, each rotated by 45 degrees.

2The Hacker's Dictionary (see the Jargon �le) de�nes \automagically" as \automatically, but in a way which, for

some reason (typically because it is too complicated, or too ugly, or perhaps even too trivial), the speaker doesn't
feel like explaining." In this case, we don't want to explain the bletcherous (see Jargon) details of how points are

plotted.
3A fractal curve is a \curve" which, if you expand any small piece of it, you get something similar to the original.

The Gosper curve, for example, is neither a true 1-dimensional curve, nor a 2-dimensional region of the plane, but

rather something in between.
4Bill Gosper is a mathematician now living in California. He was one of the original hackers who worked for

Marvin Minsky in the MIT Arti�cial Intelligence Laboratory during the '60s. He is perhaps best known for his

work on the Conway Game of Life|a set of rules for evolving cellular automata. Gosper invented the \glider gun",

resolving Conway's question as to whether it is possible to produce a �nite pattern that evolves into an unlimited
number of live cells. He used this result to prove that the Game of Life is Turing universal, in that it can be used to

simulate any other computational process!



6.001, Fall Semester, 1996-1997|Problem Set 2 8

Figure 1: Examples of the Gosper C curve at levels 0, 1, 2, 3, and 5.

Figure 1 shows the �rst few approximations to the Gosper curve, where we stop after a certain

number of levels: a level-0 curve is simply a straight line; a level-1 curve consists of two level-0

curves; a level 2 curve consists of two level-1 curves, and so on. You can also see from the �gure

how we use a recursive strategy for making the next level of approximation: a level-n curve is made

from two level-(n � 1) curves, each scaled to be
p
2=2 times the length of the original curve. One

of the component curves is rotated by �=4 (45 degrees) and the other is rotated by ��=4. After

each piece is scaled and rotated, it must be translated so that the ending point of the �rst piece is

continuous with the starting point of the second piece.

We assume that the approximation we are given to improve (named curve in the procedure) is in

standard position. By doing some geometry, you can �gure out that the second curve, after being

scaled and rotated, must be translated right by .5 and up by .5, so its beginning coincides with the

endpoint of the rotated, scaled �rst curve. This leads to the Curve-Transform gosperize:

(define (gosperize curve)

(let ((scaled-curve ((scale (/ (sqrt 2) 2)) curve)))

(connect-rigidly ((rotate-around-origin (/ pi 4)) scaled-curve)

((translate .5 .5)

((rotate-around-origin (/ -pi 4)) scaled-curve)))))

Now we can generate approximations at any level to the Gosper curve by repeatedly gosperizing

the unit line,

(define (gosper-curve level)

((repeated gosperize level) unit-line))

To look at the level level gosper curve, evaluate (show-connected-gosper level):

(define (show-connected-gosper level)

((draw-connected g1 200)

((squeeze-rectangular-portion -.5 1.5 -.5 1.5)

(gosper-curve level))))

Pre-Lab exercise 6.A De�ne a procedure show-points-gosper such that evaluation of

(show-points-gosper window level number-of-points initial-curve)

will plot number-of-points unconnected points of the level level gosper curve in window, but

starting the gosper-curve approximation with an arbitrary initial-curve rather than the unit

line. For instance,

(show-points-gosper g1 level 200 unit-line)



6.001, Fall Semester, 1996-1997|Problem Set 2 9

should display the same points as (show-connected-gosper level), but without connecting them.

But you should also be able to use your procedure with arbitrary curves. (You can �nd the

description of procedure squeeze-rectangular-portion in the �le curves.scm; you don't need

to understand it in detail to do this exercise.)

Lab exercise 6.B Try gosperizing the arc of the unit circle running from 0 to �. You will

probably want to put the curve in standard position, as well as ensuring that the result is a curve

(which means it should take as input a parameter from the unit line). Find some examples that

produce interesting designs. (You may also want to change the scale in the plotting window and

the density of points plotted.)5

Lab exercise 6.C We'd like to determine the order of growth of gosper-curve. There are lots

of things we could treat as basic units of work. In this case, let's determine the order of growth in

time, as measured by the number of times a unit-line is drawn, as a function of the level of the

gosper-curve.

The Gosper fractals we have been playing with have had the angle of rotation �xed at 45 degrees.

This angle need not be �xed. It need not even be the same for every step of the process. Many

interesting shapes can be created by changing the angle from step to step.

We can de�ne a procedure param-gosper that generates Gosper curves with changing angles.

Param-gosper takes a level number (the number of levels to repeat the process) and a second

argument called angle-at. The procedure angle-at should take one argument, the level number,

and return an angle (measured in radians) as its answer

angle-at : Sch-Nonneg-Int! Sch-Num:

Procedure param-gosper can use this to calculate the angle to be used at each step of the recursion.

(define (param-gosper level angle-at)

(if (= level 0)

unit-line

((param-gosperize (angle-at level))

(param-gosper (- level 1) angle-at))))

The procedure param-gosperize is almost like gosperize, except that it takes an another argu-

ment, the angle of rotation, and implements the process shown in �gure 2:

5One of the things you should notice is that, for larger values of n, all of these curves look pretty much the same.
As with many fractal curves, the shape of the Gosper curve is determined by the Gosper process itself, rather than

the particular shape we use as a starting point. In a sense that can be made mathematically precise, the \in�nite

level" Gosper curve is a �xed point of the Gosper process, and repeated applications of the process will converge to
this �xed point.



6.001, Fall Semester, 1996-1997|Problem Set 2 10

Figure 2: A parameterized version of the Gosper process, where the angle x can vary. Note that the endpoints of

the transformed �gure should be the same as the endpoints of the original �gure, and the interior endpoints should

match.

(define (param-gosperize theta)

(lambda (curve)

(let ((scale-factor (/ (/ 1 (cos theta)) 2)))

(let ((scaled-curve ((scale scale-factor) curve)))

(connect-rigidly ((rotate-around-origin theta) scaled-curve)

((translate .5 (* (sin theta) scale-factor))

((rotate-around-origin (- theta))

scaled-curve)))))))

For example, the ordinary Gosper curve at level level is returned by

(param-gosper level (lambda (level) pi/4))

Pre-Lab exercise 7.A Designing param-gosperize required using some elementary trigonome-

try to �gure out how to shift the pieces around so that they �t together after scaling and rotating.

It's easier to program if we let the computer �gure out how to do the shifting. Show how to rede-

�ne param-gosperize using the procedures put-in-standard-position and connect-ends from

Exercise 4 to handle the trigonometry. Your de�nition should be of the form

(define (param-gosperize theta)

(lambda (curve)

(put-in-standard-position

(connect-ends

...

...))))

Lab exercise 7.B Generate some parameterized Gosper curves where the angle changes with

the level n. We suggest starting with �=(n+ 2) and �=(1:3n). Submit sample printouts with your

problem solutions.

Lab exercise 7.C We now have three procedures to compute gosper curves: gosper-curve,

and param-gosper with argument (lambda (level) (/ pi 4))) using the \hand-crafted" def-

inition of param-gosperize above, or using your version of param-gosperize in 7.A based on

put-in-standard-position. Compare the speed of these procedures for computing selected points

on the curve at a few levels. Is there a speed advantage for the more customized procedures?



6.001, Fall Semester, 1996-1997|Problem Set 2 11

The procedure show-time will report the time in milliseconds required to evaluate a procedure of

no arguments (a \thunk"). For example, evaluating

(show-time (lambda () ((gosper-curve 10) .1)))

will print out the time to compute the point at .1 on the level 10 gosper-curve.

Pre-Lab exercise 8.A Ben Bitdiddle isn't entirely happy with the style of several of the Scheme

de�nitions on this problem set. In particular, he feels the code goes overboard in inventing names

for values that are used infrequently, and this lengthens the code and burdens someone reading the

code with remembering the invented names. For example, Ben thinks the de�nition

(define (rotate-around-origin theta)

(let ((cth (cos theta))

(sth (sin theta)))

(lambda (curve)

(lambda (t)

(let ((ct (curve t))) ;Ben eliminates the declaration of ct

(let ((x (x-of ct))

(y (y-of ct)))

(make-point

(- (* cth x) (* sth y))

(+ (* sth x) (* cth y)))))))))

would be a bit more readable if the name ct for the value of (curve t) was dropped. He proposes

instead:

(define (bens-rotate theta)

(let ((cth (cos theta))

(sth (sin theta)))

(lambda (curve)

(lambda (t)

(let ((x (x-of (curve t))) ;Ben writes (curve t)

(y (y-of (curve t)))) ;twice

(make-point

(- (* cth x) (* sth y))

(+ (* sth x) (* cth y))))))))

Is Ben's de�nition correct?

Alyssa P. Hacker warns Ben that the let declarations are more signi�cant computationally than

mere abbreviations. Briey explain why using bens-rotate as a subprocedure in place of the

original rotate-around-origin in the de�nition of gosper-curve will turn a process whose time

is linear in the level into one which is exponential in the level.

Lab exercise 8.B Look up the online documentation of the trace-entry procedure in the

Scheme Users Manual. Trace x-of to show how dramatically Alyssa's warning is con�rmed when

computing points on the gosper curve using bens-rotate as a subprocedure in place of the original



6.001, Fall Semester, 1996-1997|Problem Set 2 12

Figure 3: The Koch at levels 0, 1 and 2. Also, at the right is a \snowake" curve formed by connecting together

three rotated versions of a Koch curve.

Figure 4: To generate the next level of curve, split the current level into three equal pieces. The �rst and third

contain scaled copies of the current curve. In the middle piece, place two scaled and rotated (by 60 and -60 degrees)

copies of the current level curve.

rotate-around-origin. Turn in a table summarizing the number of calls to x-of by gosper-curve

using the two di�erent rotating procedures at four or �ve illustrative levels. (A simple way to switch

to use of bens-rotate in place of rotate-around-origin is to evaluate

(define rotate-around-origin bens-rotate)

Of course, you had better save the procedure rotate-around-origin under some other name so

you can restore it. Otherwise, you may have to reload the problem set.)

We can now invent other schemes like the Gosper process, and use them to generate fractal curves.

Pre-Lab exercise 9.A The Koch curve is produced by a process similar to the Gosper curve,

as shown in �gure 3, and �gure 4. Given a basic curve, we split the extent of the curve into three

equal pieces, then draw scaled copies of the curve in the �rst and third piece. In the middle piece,

we draw two scale copies of the initial curve, one rotated by 60 degrees, and the other rotated by

-60 degrees, where all of the curves are drawn so that their endpoints meet.

Write a procedure kochize that generates Koch curves.

(Teaser: You can generate the Koch curve by using param-gosper with an appropriate argument.

Can you �nd this?)

Lab exercise 9.B Print some pictures of your Koch curve at various levels.

Lab Exercise 10 You now have a lot of elements to work with: scaling, rotation, translation,

curve plotting, Gosper processes, Koch processes, and generalizations. For example, you can eas-

ily generalize the parameterized Gosper process to start with something other than an horizontal

line. The Gosper curve is continuous but nowhere di�erentiable, so it may be interesting to dis-

play its derivatives at various levels and numbers of points (see the procedure deriv-t in the �le



6.001, Fall Semester, 1996-1997|Problem Set 2 13

curves.scm). Or you can create new fractal processes. Or you can combine the results of di�erent

processes into one picture. Spend some time playing with these ideas to see what you can come up

with.

We hope you will have generated some interesting designs in doing this assignment. Please turn

in at least one example of a new design that you have created, and show the expression you used

to generate it. Feel free to create entirely new kinds of fractals if you wish. In order to minimize

demand on the graphics printers do not turn in more than four pictures.

Collaboration and Pedagogy Indicate the names of your colloborators, if any, on this assign-

ment. Indicate the source and nature of any other help you may have received in the problem

solutions, including students not in 6.001 and any portions of the subject archives you may have

referenced. (Remember, we encourage open collaboration among 6.001 students.) Finally, tell us

how much time you spent in lab on this assignment, and how much time you spent in total on this

assignment.

We welcome any other comments on the Problem Set you may have.


