
1
version August 27, 1996, 10:37 A.M.

MASSACHVSETTS INSTITVTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Fall Semester, 1996-97

Problem Set 4

The Square-limit language

Issued: Tuesday, September 24, 1996

Written solutions due: in recitation on Friday, October 4, 1996

Tutorial preparation for: week of September 30, 1996

Reading: Section 2.2; code �les hend.scm and hutils.scm (attached)

In this assignment, you will work with Peter Henderson's \square-limit" graphics design language,

which will be described in lecture on September 26, and which appears in Section 2.2.4 of the notes.

Before beginning work on this programming assignment, you should review that section. The goal

of this problem set is to reinforce ideas about data abstraction and higher-order procedures, and

to emphasize the expressive power that derives from appropriate primitives, means of combination,

and means of abstraction.1

Section 1 of this handout reviews the language, similar to what appears in the notes. You will need

to study this in order to prepare the tutorial presentations in section 2. Section 3 gives the lab

assignment, which includes an optional design contest.

1This problem set was developed by Hal Abelson, based upon work by Peter Henderson (\Functional Geometry,"
in Proc. ACM Conference on Lisp and Functional Programming, 1982). The image display code was designed and
implemented by Daniel Coore.

Figure 1: Designs generated with the picture language.

6.001, Fall Semester, 1996-97|Problem Set 4 2

1. The Square-limit language

Recall that the key idea in the square-limit language is to use painter procedures that take frames

as inputs and paint images that are scaled to �t the frames. To do this, we will need some basic

building blocks.

Basic data structures

Vectors consist of a pair of numbers, glued together in some appropriate manner. The contract we

enforce for this data abstraction is the following:

� the constructor make-vect takes two arguments and associates them into a vector, and

� the selectors xcor-vect and ycor-vect return the components of the vector constructed by

make-vect. (You'll actually implement this abstraction later on, but of course for purposes

of discussion, we only need to know the abstraction contract.)

We need a set of operations on vectors, and in particular assume three:

� add-vect takes two vectors as input, and returns as output another vector, whose components

are the sums of the components of the input vectors;

� sub-vect takes two vectors as input, and returns as output another vector, whose components

are the di�erences of the components of the input vectors (e.g. the �rst vector minus the

second);

� scale-vect takes as input a number and a vector and returns a vector whose components

are the components of the input vector, multiplied by the input number.

A pair of vectors determines a directed line segment|the segment running from the endpoint of

the �rst vector to the endpoint of the second vector. Again, we just need a contract:

� constructor is make-segment and

� selectors are start-segment and end-segment.

Frames

A frame is represented by three vectors: an origin and two edge vectors.

(define (make-frame origin edge1 edge2)

(list 'frame origin edge1 edge2))

(define origin-frame cadr)

(define edge1-frame caddr)

(define edge2-frame cadddr)

6.001, Fall Semester, 1996-97|Problem Set 4 3

edge2
vector

frame
edge1
vector

(0,0) point

frame

on display screen

frame
origin
vector

Figure 2: A frame is described by three vectors|an origin and two edges.

The frame's origin is given as a vector with respect to the origin of the graphics-window coordinate

system. The edge vectors specify the o�sets of the corners of the frame from the origin of the frame.

If the edges are perpendicular, the frame will be a rectangle; otherwise it will be a more general

parallelogram. Figure 2 shows a frame and its associated vectors.

Each frame determines a system of \frame coordinates" (x; y) where (0; 0) is the origin of the frame,

x represents the displacement along the �rst edge (as a fraction of the length of the edge) and y is

the displacement along the second edge. For example, the origin of the frame has frame coordinates

(0; 0) and the vertex diagonally opposite the origin has frame coordinates (1; 1).

Another way to express this idea is to say that each frame has an associated frame coordinate map

that transforms the frame coordinates of a point into the Cartesian plane coordinates of the point.

That is, (x; y) gets mapped onto the Cartesian coordinates of the point given by the vector sum

Origin(Frame) + x �Edge
1
(Frame) + y �Edge

2
(Frame)

We can represent the frame coordinate map by the following procedure:

(define (frame-coord-map frame)

(lambda (point-in-frame-coords)

(add-vect

(origin-frame frame)

(add-vect (scale-vect (xcor-vect point-in-frame-coords)

(edge1-frame frame))

(scale-vect (ycor-vect point-in-frame-coords)

(edge2-frame frame))))))

For example, ((frame-coord-map a-frame) (make-vect 0 0)) will return the same value as

(origin-frame a-frame).

The procedure make-relative-frame provides a convenient way to transform frames. Given three

points origin, corner1, and corner2 (expressed in frame coordinates), it returns a procedure

6.001, Fall Semester, 1996-97|Problem Set 4 4

which for any frame f returns a new frame g which uses those points in f coordinates to de�ne the

corners of the g frame:

(define (make-relative-frame origin corner1 corner2)

(lambda (frame)

(let ((m (frame-coord-map frame)))

(let ((new-origin (m origin)))

(make-frame new-origin

(sub-vect (m corner1) new-origin)

(sub-vect (m corner2) new-origin))))))

For example,

(make-relative-frame (make-vect .5 .5) (make-vect 1 .5) (make-vect .5 1))

returns the procedure that takes a frame f and returns the upper right quarter of f as a new frame

g.

Painters

As described in the notes, a painter is a procedure that, given a frame as argument, \paints" a

picture in the frame. That is to say, if p is a painter and f is a frame, then evaluating (p f) will

cause an image to appear in the frame. The image will be scaled and stretched to �t the frame.

The language you will be working with includes four ways to create primitive painters.

The simplest painters are created with number->painter, which takes a number as argument.

These painters �ll a frame with a solid shade of gray. The number speci�es a gray level: 0 is

black, 255 is white, and numbers in between are increasingly lighter shades of gray. Here are some

examples:

(define black (number->painter 0))

(define white (number->painter 255))

(define gray (number->painter 150))

You can also specify a painter using procedure->painter, which takes a procedure as argument.

The procedure determines a gray level (0 to 255) as a function of (x; y) position, for example:

(define diagonal-shading

(procedure->painter (lambda (x y) (* 100 (+ x y)))))

The x and y coordinates run from 0 to 1 and specify the fraction that each point is o�set from the

frame's origin along the frame's edges. (See �gure 2.) Thus, the frame is �lled out by the set of

points (x; y) such that 0 � x; y � 1.

A third kind of painter is created by segments->painter, which takes a list of line segments as

argument. This paints the line drawing speci�ed by the list segments. The (x; y) coordinates of the

line segments are speci�ed as above. For example, you can make the \Z" shape shown in �gure 3

as

6.001, Fall Semester, 1996-97|Problem Set 4 5

Figure 3: Examples of primitive painters: mark-of-zorro and fovnder.

(define mark-of-zorro

(let ((v1 (make-vect .1 .9))

(v2 (make-vect .8 .9))

(v3 (make-vect .1 .2))

(v4 (make-vect .9 .3)))

(segments->painter

(list (make-segment v1 v2)

(make-segment v2 v3)

(make-segment v3 v4)))))

The �nal way to create a primitive painter is from a stored image. The procedure load-painter

uses an image from the 6001 image collection to create a painter 2. For instance:

(define fovnder (load-painter "fovnder"))

will paint an image of William Barton Rogers, the fovnder of MIT. (See �gure 3.)

Transforming and combining painters

Given a painter, we can produce a new painter that transforms its frame before painting in it. For

example, if p is a painter and f is a frame, then

2The images are kept in the directory 6001-images. The load-painter procedure transforms them into painters,
so that they can be scaled and deformed by the operations in the square-limit language. Use the Edwin command
M-x list-directory to see entire contents of the directory. Each image is 128 � 128, stored in \pgm" format.

6.001, Fall Semester, 1996-97|Problem Set 4 6

(p ((make-relative-frame (make-vect .5 .5) (make-vect 1 .5) (make-vect .5 1))

f))

will paint in the upper-right-hand corner of the frame.

We can abstract this idea with the following procedure:

(define (transform-painter origin corner1 corner2)

(lambda (painter)

(compose painter

(make-relative-frame origin corner1 corner2))))

Calling transform-painter with an origin and two corners returns a procedure that transforms

a painter into one that paints relative to a new frame with the speci�ed origin and corners. For

example, we could de�ne:

(define (shrink-to-upper-left painter)

((transform-painter (make-vect .5 .5) (make-vect 1 .5) (make-vect .5 1))

painter))

Note that this can be written equivalently as

(define shrink-to-upper-left

(transform-painter (make-vect .5 .5) (make-vect 1 .5) (make-vect .5 1)))

Another transformed frame, called flip-horiz should ip images horizontally (we'll ask you to

implement this later), another rotates images counterclockwise by 90 degrees:

(define rotate90

(transform-painter (make-vect 1 0)

(make-vect 1 1)

(make-vect 0 0)))

and similar rotations, rotate180 and rotate270, can be created.

We can combine the results of two painters in a single frame by calling each painter on the frame:

(define (superpose painter1 painter2)

(lambda (frame)

(painter1 frame)

(painter2 frame)))

To draw one image beside another, we combine one in the left half of the frame with one in the

right half of the frame:

6.001, Fall Semester, 1996-97|Problem Set 4 7

(define (beside painter1 painter2)

(let ((split-point (make-vect .5 0)))

(superpose

((transform-painter zero-vector

split-point

(make-vect 0 1))

painter1)

((transform-painter split-point

(make-vect 1 0)

(make-vect .5 1))

painter2))))

We can also de�ne painters that combine painters vertically, by using rotate together with beside.

The painter produced by below shows the image for painter1 below the image for painter2:

(define (below painter1 painter2)

(rotate270 (beside (rotate90 painter2)

(rotate90 painter1))))

2. Tutorial exercises

You should prepare the following exercises for oral presentation in tutorial. They cover material in

sections 2.1 and 2.2 of the text, and they also test your understanding of the square-limit language

described above, in preparation for doing this week's lab in. You may wish to use the computer to

check your answers to these questions, but you should try to do them (at least initially) without

the computer.

Tutorial exercise 1: Do exercises 2.21 and 2.22 from the notes.

Tutorial exercise 2: In the square-limit language, a frame is represented as a list of four things|

the symbol frame followed by the origin and the two edge vectors.

1. Pick some values for the coordinates of origin and edge vectors and draw the box-and-pointer

structure for the resulting frame { using some de�nition that you choose for vectors as well.

2. Suppose we change the representation of frames and represent them instead as a list of

three vectors|the origin and the two edges|without including the symbol frame. Give

the new de�nitions of make-frame, origin-frame, edge1-frame, and edge2-frame for this

representation. In addition to changing these constructors and selectors, what other changes

to the implementation of the square-limit language are required in order to use this new

representation?

3. Why might it be useful to include the symbol frame as part of the representation of frames?

6.001, Fall Semester, 1996-97|Problem Set 4 8

Tutorial exercise 3: Describe the patterns drawn by

(procedure->painter (lambda (x y) (* x y)))

(procedure->painter (lambda (x y) (* 255 x y)))

Tutorial exercise 4: Section 1 de�nes below in terms of beside and rotate. Give an alternative

de�nition of below that does not use beside.

Tutorial exercise 5: Describe the e�ect of

(transform-painter (make-vect .1 .9)

(make-vect 1.5 1)

(make-vect .2 0))

3. To do in lab

Load the code for problem set 3, which contains the procedures described in section 1. You will

not need to modify any of these. We suggest that you de�ne your new procedures in a separate

(initially empty) editor bu�er, to make it easy to reload the system if things get fouled up.

When the problem set code is loaded, it will create three graphics windows, named g1, g2, and g3.

To paint a picture in a window, use the procedure paint. For example,

(paint g1 fovnder)

will show a picture of William Barton Rogers in window g1 (once you have successfully completed

lab exercise 1 and (load-rest) successfully evaluates.

There is also a procedure called paint-hi-res, which paints the images at higher resolution (256�

256 rather than 128 � 128). Painting at a higher resolution produces better looking images, but

takes four times as long. As you work on this problem set, you should look at the images using

paint, and reserve paint-hi-res to see the details of images that you �nd interesting.3

Printing pictures You can print images on the laserjet printer with Edwin's M-x print-graphics

command as described in the Don't Panicmanual. The laserjet cannot print true greyscale pictures,

so the pictures will not look as good as they do on the screen. Please print only a few images|only

the ones that you really want|so as not to waste paper and clog the printer queues. We suggest

that you print only images created with paint-hi-res, not paint.

Lab exercise 1: Complete the implementation of the data abstractions, by choosing a repre-

sentation for vectors (make-vect, xcor-vect, ycor-vect) and for segments (make-segment,

start-segment, end-segment). Use those abstractions to implement the three operations on

vectors (add-vect, sub-vect, scale-vect). You may �nd it convenient to do this in the copy

3Painting a primitive image like fovnder won't look any di�erent at high resolution, because the original picture
is only 128 � 128. But as you start stretching and shrinking the image, you will see di�erences at higher resolution.

6.001, Fall Semester, 1996-97|Problem Set 4 9

of hutils.scm that was loaded into your editor. Once you are done adding your de�nitions, save

the �le and then load it into your Scheme bu�er by evaluating:

(load `` /work/hutils.scm'')

If you work on the problem set in multiple sessions, be sure that you reload this �le after you have

loaded up the problem set, so that your new de�nitions will override the ones in the problem set

�le.

Turn in a listing of your code, and some examples of using it.

Once you have created your data abstractions, evaluate

(load-rest)

to have the rest of the code for the problem set loaded into your Scheme environment.

Lab exercise 2: Make a collection of primitive painters to use in the rest of this lab. In addition

to the ones prede�ned for you (and listed in section 1), de�ne at least one new painter of each

of the four primitive types: a uniform grey level made with number->painter, something de�ned

with procedure->painter, a line-drawing made with segments->painter, and an image of your

choice that is loaded from the 6001 image collection with load-painter. Turn in a list of your

de�nitions.

Lab exercise 3: Earlier we referred to examples of transforming painters, i.e. procedures that

take a painter as input and create a new painter that will draw relative to some new frame.

Increase the repetoire of such methods by implementing a transformation, flip-horiz, which

takes as input a painter, and returns a new painter that draws its input ipped about the vertical

axis. Also implement rotate180 and rotate270 in analogy to rotate90. Turn in a listing of your

procedures.

Lab exercise 4: Experiment with some combinations of your primitive painters, using beside,

below, superpose, ips, and rotations, to get a feel for how these means of combination work. You

needn't turn in anything for this exercise.

Lab exercise 5: The \diamond" of a frame is de�ned to be the smaller frame created by joining

the midpoints of the original frame's sides, as shown in �gure 4. De�ne a procedure diamond that

transforms a painter into one that paints its image in the diamond of the speci�ed frame, as shown

in �gure 4. Try some examples, and turn in a listing of your procedure.

Lab exercise 6: The \diamond" transformation has the property that, if you start with a square

frame, the diamond frame is still square (although rotated). De�ne a transformation similar to

diamond, but which does not produce square frames. Try your transformation on some images to

get some nice e�ects. Turn in a listing of your procedure.

6.001, Fall Semester, 1996-97|Problem Set 4 10

Figure 4: The \diamond" of a frame is formed by joining the midpoints of the sides. This is illustrated with a

painting created by (diamond fovnder).

Lab exercise 7: The following recursive right-split procedure was demonstrated in lecture:

(define (right-split painter n)

(if (= n 0)

painter

(let ((smaller (right-split painter (- n 1))))

(beside painter (below smaller smaller)))))

Try this with some of the painters you've previously de�ned, both primitives and combined ones.

Now de�ne an analogous up-split procedure as shown in �gure 5. Make sure to test it on a variety

of painters. Turn in a listing of your procedure. (In de�ning your procedure, remember that (below

painter1 painter2) produces painter1 below painter2.)

Lab exercise 8: Right-split and up-split are both examples of a common pattern that begins

with a means of combining two painters and applies this over and over in a recursive pattern. We

can capture this idea in a procedure called keep-combining, which takes as argument a combiner

(which combines two painters). For instance, we should be able to give an alternative de�nition of

right-split as

(define new-right-split

(keep-combining

(lambda (p1 p2)

(beside p1 (below p2 p2)))))

Complete the following de�nition of keep-combining:

6.001, Fall Semester, 1996-97|Problem Set 4 11

Figure 5: The up-split procedure places a picture below two (recursively) up-split copies of itself. This was created

from (up-split fovnder 4)

(define (keep-combining combine-2)

;; combine-2 = (lambda (painter1 painter2) ...)

(lambda (painter n)

((repeated

h �ll in missing expression i

n)

painter)))

where repeated is given by:

(define (repeated f n)

(cond ((= n 0) identity)

((= n 1) f)

(else (compose f (repeated f (- n 1))))))

Show that you can indeed de�ne right-split using your procedure, and give an analogous de�ni-

tion of up-split.

Lab exercise 9 Once you have keep-combining, you can use it to de�ne lots of recursive means

of combination. Figure 6 shows an example, which comes from:

(define nest-diamonds

(keep-combining

(lambda (p1 p2) (superpose p1 (diamond p2)))))

(nest-diamonds fovnder 4)

Invent some variations of your own. Turn in the code and one or two sample pictures.

6.001, Fall Semester, 1996-97|Problem Set 4 12

Figure 6: Some recursive combination schemes, de�ned with keep-combining.

Lab exercise 10: The procedures you have implemented give you a wide choice of things to

experiment with. Invent some new means of combination, both simple ones like beside and complex

higher-order ones like keep-combining and see what kinds of interesting images you can create.

Turn in the code and one or two �gures.

Contest (Optional) Hopefully, you generated some interesting designs in doing this assignment.

If you wish, you can enter printouts of your best designs in the 6.001 PS3 design contest. Turn

in your design collection together with your homework, but stapled separately, and make sure your

name is on the work. For each design, show the expression you used to generate it. Designs will

be judged by the 6.001 sta� and other internationally famous art critics, and fabulous prizes will

be awarded in lecture. There is a limit of �ve entries per student. Make sure to turn in not only

the pictures, but also the procedure(s) that generated them.

How much time did you spend on this homework assignment? Report separately time spent before

going to lab and time spent in the 6.001 lab.

If you cooperated with other students working this problem set please indicate their names on

your solutions. As you should know, as long as the guidelines described in the 6.001 Policy on

Cooperation handout are followed, such cooperation is allowed and encouraged.

