
1
version September 29, 1996, 1:54 P.M.

MASSACHVSETTS INSTITVTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Fall Semester, 1996-97

Problem Set 5

Issued: Tuesday, October 1, 1996

Due: Friday, October 11, in recitation.

Tutorial preparation for: Week of October 7.

Reading Assignment: Sections 2.2, 2.3

1. Tutorial exercise

Please prepare Exercises 2.28, 2.37, 2.53 and 2.54 from the text.

2. Background: The Co�ee Drinkers Delight

You just need to read this section to prepare for Part 3; there is nothing speci�c to be handed in.

Even though it is just a few weeks into the season, it's getting hard to keep track of the standings

of the contestants in the Fall 1996 WSCDI1 Tour. Before things get further out of control, we are

going to build a database system to organize the results of this competition. A popular way to

structure databases is to use the Relational Model, where a database is represented as a collection

of relations, or tables.

The Tour consists of a series of events. For each event, the contestant who spent the most consecu-

tive hours sur�ng the Web and imbibing copious amounts of ca�eine without the need to head to the

\head" is declared the Cafemeister. We also record the runners-up and the number of consecutive

hours they spent on in the event. All this is shown in the EVENTS table:

1Web Surfers/Co�ee Drinkers International

6.001, Fall Semester, 1996-97|Problem Set 5 2

EVENT CAFEMEISTER HOURS RUNNER-UP RU-HOURS

Netscape-Pro-Am Ben 9 Alyssa 6

Microsoft-Explorer-Invitational Lem-E 10 Ben 9

Capuccino-Cup Eva-Lu 7 Cy-D 6

Juan-Valdez-Challenge Louis 15 Eva-Lu 9

Seattle-Sleepless-Masters Louis 19 Cy-D 15

Tour-de-Ca�eine Alyssa 28 Lem-E 24

Espresso-Express Eva-Lu 15 Ben 10

Coupe-Mondial Alyssa 17 Eric 12

End-of-Term-Grand-Slam Alyssa 30 Louis 28

Here is the ATHLETES table:

NAME SPONSOR LAST-YEAR-WSCD-RANKING

Ben Starbucks 3

Alyssa 7-11 4

Cy-D Co�ee-Connection 6

Lem-E Green-Mountain 2

Louis LaVerdes 5

Eva-Lu Co�ee-Connection 7

Eric Starbucks 1

To query the database, we use operations of the Relational Algebra, each of which is a function

from tables to tables. There are three main operations: v-slice, h-slice and join.

The v-slice operator takes \vertical slices" of a table.

Example Query Q1: \List all events, their cafemeisters and runners-up". Formally, we'd say:

(v-slice '(event cafemeister runner-up)

EVENTS)

which produces the table:

EVENT CAFEMEISTER RUNNER-UP

Netscape-Pro-Am Ben Alyssa

Microsoft-Explorer-Invitational Lem-E Ben

Capuccino-Cup Eva-Lu Cy-D

Juan-Valdez-Challenge Louis Eva-Lu

Seattle-Sleepless-Masters Louis Cy-D

Tour-de-Ca�eine Alyssa Lem-E

Espresso-Express Eva-Lu Ben

Coupe-Mondial Alyssa Eric

End-of-Term-Grand-Slam Alyssa Louis

In general, the v-slice operator takes a list of column names and a table T, and produces a new

table with just those columns from T.

The h-slice operator takes \horizontal slices" of a table.

6.001, Fall Semester, 1996-97|Problem Set 5 3

Example Query Q2: \List all athletes sponsored by Starbucks". Formally, we'd say:

(h-slice '(eq? sponsor 'Starbucks)

ATHLETES)

which produces the table:

NAME SPONSOR LAST-YEAR-WSCD-RANKING

Ben Starbucks 3

Eric Starbucks 1

In general, the h-slice operator takes a predicate and a table T, and produces a new table with

the same columns, but with only those rows of T that satisfy the predicate. Note that in specifying

a predicate, we will distinguish between symbols (by using quotation) and variables, whose values

we need. For these variables, we will using an \environment" to �nd the associated value, that is

we will use the value in a row corresponding to the slot in the list of column names speci�ed by

the variable.

Of course, since the result of a relational operator is itself a table, we can compose relational

expressions.

Example Query Q3: \List events and cafemeisters who won by 3 hours exactly".

(v-slice '(event cafemeister)

(h-slice '(= hours (+ ru-hours 3))

EVENTS))

producing the table:

EVENT CAFEMEISTER

Netscape-Pro-Am Ben

Both h-slice and v-slice operate only on a single table. The join operator, on the other hand,

takes two tables T1 and T2 and produces a new table each of whose rows is a concatenation of a

row from T1 and a row from T2. We illustrate it with a very small example. Let T1 be

PERSON WATCHES

Louis ER

Lem-E This-Old-House

and let T2 be:

SHOW CHANNEL

ER 7

This-Old-House 2

Then, (join T1 T2) will produce this table:

6.001, Fall Semester, 1996-97|Problem Set 5 4

PERSON WATCHES SHOW CHANNEL

Louis ER ER 7

Louis ER This-Old-House 2

Lem-E This-Old-House ER 7

Lem-E This-Old-House This-Old-House 2

Now you can see why we didn't attempt to show the result of joining the EVENTS and ATHLETES

tables { the total number of rows would be quite large (How many rows do you think there would

be??).

Using the three relational operators: v-slice, h-slice and join, we can express quite complex

and interesting queries on the database.

Example Query Q4: \List the events where the cafemeisters were sponsored by Starbucks":

(v-slice '(event)

(h-slice '(eq? sponsor 'Starbucks) ;;; (1)

(h-slice '(eq? cafemeister name) ;;; (2)

(join EVENTS ATHLETES))))

The join operator pairs every event with every athlete. The h-slice operator (2) retains only

those rows where the event cafemeister is the same as the concatenated athlete. The h-slice

operator (1) retains only those rows whre the sponsor is Starbucks. Finaly, the v-slice operator

gets rid of all the extra columns, keeping only the event names. Thus, the results is a (1-column)

table:

EVENT

Netscape-Pro-Am

Most algebras have laws exprssing equivalences between expressions. For example, in ordinary

algebra, we are familiar with the distributive law:

a � b+ a � c = a � (b+ c)

Similarly, relational algebra also has laws. One such law is:

(h-slice p1 (h-slice p2 R)) = (h-slice (and p1 p2) R)

Using this law, we can re-express Q4 as follows:

Example Query Q5:

(v-slice '(event)

(h-slice '(and (eq? sponsor 'Starbucks)

(eq? cafemeister name))

(join EVENTS ATHLETES)))

Another law is

(h-slice p (join R1 R2)) = (join R1 (h-slice p R2))

6.001, Fall Semester, 1996-97|Problem Set 5 5

whenever p refers only to columns in R2. Using this law, we can again re-express Q4 as follows:

Example Query Q6:

(v-slice '(event)

(h-slice '(eq? cafemeister name)

(join EVENTS

(h-slice '(eq? sponsor 'Starbucks)

ATHLETES))))

This is a signi�cant optimization, because the number of rows going into the join operator has

been drastically reduced.

Example Query Q7: \Which cafemeisters with WSCDI ranking less than 3 spent more than 10

hours non-stop, and for which events?":

(v-slice '(cafemeister event)

(h-slice '(> hours 8)

(h-slice '(eq? cafemeister name)

(h-slice '(< last-year-wscd-ranking 3)

(join EVENTS

ATHLETES)))))

3. To Do in Lab

We are now going to develop implementations of the relational operators presented in Part 2. Load

the problem set into your editor bu�er, and look it over. It contains:

� Some de�nitions to be evaluated immediately, including the EVENTS and ATHLETES tables;

� Some incomplete de�nitions corresponding to the problems below; and

� The example queries Q1 through Q7 for testing.

The following problems involve �lling in the missing parts of the de�nitions, and testing your code.

As always, you should include printed transcripts of your Scheme interactions which test the code.

Problem 1 The constructor for tables is de�ned as:

(define make-table

(lambda (col-names rows)

(cons col-names rows)))

where col-names is a list of symbols representing column names, and rows is a list of rows, where

each row is itself a list of data. For example, this is how we construct the EVENTS table:

(define EVENTS

(make-table

'(EVENT CAFEMEISTER HOURS RUNNER-UP RU-HOURS)

'((Netscape-Pro-Am Ben 9 Alyssa 6)

...

(End-of-Term-Grand-Slam Alyssa 30 Louis 28))))

6.001, Fall Semester, 1996-97|Problem Set 5 6

De�ne the corresponding selectors col-names-of and rows-of. Apply it to ATHLETES to see that

it works.

Problem 2 The following function:

(define lookup

(lambda (col col-names row)

...))

takes a symbol (col), a list of column names (col-names) and a list of corresponding data (row),

and returns the datum from row corresponding to col. The idea behind lookup is to �nd values

associated with variables in an environment, that is value in the row in the same spot as the symbol

col in the list col-names.

For example:

(lookup 'cafemeister

'(EVENT CAFEMEISTER HOURS RUNNER-UP RU-HOURS)

'(Netscape-Pro-Am Ben 9 Alyssa 6))

will return the symbol Ben. The pair of lists col-names and row is also called an environment,

i.e., an association of names and values.

Complete the de�nition of lookup, and run it on a few examples to show that it works.

Problem 3 The function map, which applies a procedure to every member of a list and returns

all the results in a new list, was introduced in class:

(define map

(lambda (proc lst)

(if (null? lst)

'()

(cons (proc (car lst))

(map proc (cdr lst))))))

Use it, along with the lookup function, to complete the de�nition of:

(define v-slice-row

(lambda (cols col-names row)

...))

Here, cols is a list of symbols, and col-names and row form an environement, as in Problem 2. It

returns a list of data corresponding to the columns named by cols. For example:

(v-slice-row '(event cafemeister)

'(EVENT CAFEMEISTER HOURS RUNNER-UP RU-HOURS)

'(Netscape-Pro-Am Ben 9 Alyssa 6))

should return the list:

(Netscape-Pro-Am Ben)

6.001, Fall Semester, 1996-97|Problem Set 5 7

Problem 4 Use map and v-slice-row to complete the de�nition of:

(define v-slice

(lambda (cols table)

...))

Run query Q1, and another query of your own invention to demonstrate that it works correctly.

Be sure also to explain your query in English, as we did in the examples.

Problem 5 In order to implement the h-slice operator, we need to be able to evaluate a

predicate on each row of a table. Let's start with a function that evaluates a predicate on a single

row, i.e., we will use it as follows:

(evaluate '(< hours 10)

col-names

row)

i.e., we will evaluate the predicate (< hours 10) in the environment speci�ed by col-names and

row.

A predicate is an expression that is either atomic or not. If not atomic, it is the application of an

operator to one or more other expressions. If it is atomic, then it is either a symbol (in which case

it represents a datum in row) or it is a number (in which case it represents itself). Here are some

examples of expressions:

23

(+ ru-hours 10)

(< hours (+ ru-hours 10))

(quote Alyssa)

(eq? cafemeister (quote Alyssa))

Here are some useful abstractions to extract the operator and arguments of an expression.

(define op-of (lambda (e) (car e)))

(define arg1-of (lambda (e) (cadr e)))

(define arg2-of (lambda (e) (caddr e)))

We assume that no operator takes more than two arguments, i.e., for our relational language, unlike

Scheme, operators like +, and, etc., take exactly two arguments.

here is the skeleton of the evaluate function:

6.001, Fall Semester, 1996-97|Problem Set 5 8

(define evaluate

(lambda (expr col-names row)

(cond

((symbol? expr)

(lookup expr col-names row))

((number? expr) expr)

((eq? (op-of expr) '=)

(= (evaluate (arg1-of expr) col-names row)

(evaluate (arg2-of expr) col-names row)))

((eq? (op-of expr) '<)

(< (evaluate (arg1-of expr) col-names row)

(evaluate (arg2-of expr) col-names row)))

.... and so on for other operators ...

(else (error "EVALUATE: expression not well-formed" expr)))))

Fill in the clauses of the conditional for the operators quote, >, eq?, +, and, or, and not.

Feel free to include more operators if you wish.

Test your function evaluate using the column names and �rst row of the events table, and several

possible predicate expressions.

Problem 6 The function filter, which applies a predicate to every element of a list, returning

a new list containing only those elements that satisfy the predicate, was introduced in class:

(define filter

(lambda (pred lst)

(cond

((null? lst) '()) ; if lst empty, return empty list

((pred (car lst)) ; if car satisfies pred,

(cons (car lst) ; include it

(filter pred (cdr lst)))) ; with remainder

(else ; otherwise

(filter pred (cdr lst)))))) ; discard car, do remainder

Using filter and evaluate, complete the following de�nition:

(define h-slice

(lambda (pred table)

...))

Run queries Q2 and Q3 and two more queries of your own invention to demonstrate that it works

correctly. Be sure also to explain your queries in English, as we did in the examples.

Problem 7 here is a function that computes the cross-product of two lists:

6.001, Fall Semester, 1996-97|Problem Set 5 9

(define cross-product

(lambda (x-list y-list)

(flatten2 (map (lambda (x)

(map (lambda (y) (list x y))

y-list))

x-list))))

(a) What is the result of the following application?

(cross-product '(1 2) '(a b c))

(b) If the input lists for cross-product have m and n elements in them, respectively, how long is

the output list?

(c) Using map, flatten2 and cross-product, complete the de�nition for the join relational

operator:

(define join

(lambda (table-1 table-2)

(let ((N1 (col-names-of table-1))

(N2 (col-names-of table-2))

(R1 (rows-of table-1))

(R2 (rows-of table-2)))

(make-table

...

...))))

(d) Run queries Q4, Q5, Q6, Q7 and one more query of your own invention to demonstrate that it

works. Be sure also to explain your query in English, as we did in the examples.

Problem 8 Q6 was a signi�cant optimization of Q4. Perform the same optimization on Q7 and

run it again.

Problem 9 Since a join produces all pairings of the rows of its input tables, most rows in the

output are meaningless. Thus, every time we do a join, we immediately use h-slice to keep only

those rows where some pair of �elds are equal. Let's de�ne a new relational operator equi-join

that makes this more convenient. For example

(equi-join 'cafemeister 'name EVENTS ATHLETES)

should produce the same results as:

(h-slice '(eq? cafemeister name)

(join EVENTS ATHLETES))

Give a de�nition for equi-join. (Note: there are many ways of doing this, with varying levels of

e�ciency. Any solution will do, but you are welcome to try to make it e�cient.) Re-express Q4

using equi-join, and run it again.

