
1
version October 8, 1996, 7:21 P.M.

MASSACHVSETTS INSTITVTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Fall Semester, 1996-97

Problem Set 6

A Generic Arithmetic Package

Issued: 8 October 1996

Written solutions due: in recitation on Friday, October 25, 1996

Tutorial preparation for: week of October 21, 1995

Reading: Section 2.4 and 2.5 of the notes, plus attached code.

This problem set is based on Sections 2.4 and 2.5 of the notes, which discuss a generic arithmetic

system that is capable of dealing with rational functions (quotients of polynomials). You should

study and understand these sections and also carefully read and think about this handout before

attempting to solve the assigned problems.

The generic arithmetic system is organized into a number of pieces. The complete code is attached

at the end of the handout. All of this code will be loaded into Scheme when you load the �les

for this problem set. You will need to edit some portions of this code to add functionality to the

system.

There is a larger amount of code for you to manage in this problem set than in previous ones.

Furthermore, the code makes heavy use of data-directed techniques. We do not intend for you to

study it all|and you may run out of time if you try. This problem set will give you an opportunity

to acquire a key professional skill: mastering the code organization well enough to know what you

need to understand and what you don't need to understand.

Be aware that in a few places, which will be explicitly noted below, this problem set modi�es (for

the better!) the organization of the generic arithmetic system described in the text.

Use e-mail to send your tutor your PreLab work, computer listings of all the procedures you write

in lab, and transcripts showing that the required functionality was added to your system. The

transcript should include enough tests to demonstrate the functionality of your modi�cations and

show that they work properly.

Please keep track of the total time you spend working this problem set and the total time you

spend in lab, and turn in these times along with your PreLab and Lab work.

6.001, Fall Semester, 1996-97|Problem Set 6 2

Generic Arithmetic

The basic generic arithmetic system

There are three kinds, or subtypes, of generic numbers in the system of this Problem Set: generic

ordinary numbers, generic rational numbers, and generic polynomials. Elements of these subtypes

are tagged items with one of the tags number, rational, or polynomial, followed by a data

structure representing an element of the corresponding subtype. For example, a generic ordinary

number has tag number and another part, called its contents, which represents an ordinary number.

We represent:

� a generic ordinary number as: Generic-OrdNum = (fnumberg � RepNum)

� a generic rational number as: Generic-Rational = (frationalg � RepRat)

� and a generic polynomial as: Generic-Polynomial = (fpolynomialg � RepPoly).

A generic number (Generic-Num) is either a generic ordinary number (Generic-OrdNum), a generic

rational number (Generic-Rational), or a generic polynomial (Generic-Polynomial), as expressed in

a type equation:

Generic-Num = (fnumberg � RepNum) [(frationalg � RepRat) [(fpolynomialg � RepPoly):

The type taggingmechanism is the simple one described on p. 166 of the text, and the apply-generic

is the one without coercions described in section 2.4.3. The code for these is in types.scm.

We will also assume that the commands put and get are available to automagically update the

table of methods around which the system is designed. You needn't be concerned in this problem

set how put and get are implemented1 .

Some familiar arithmetic operations on generic numbers are

(define (add x y) (apply-generic 'add x y))

(define (sub x y) (apply-generic 'sub x y))

(define (mul x y) (apply-generic 'mul x y))

(define (div x y) (apply-generic 'div x y))

The type of an arithmetic operation is a speci�cation of the types of its operands and the type of

its value. The four operations above all take a pair of operands of type Generic-Num and return a

value of type Generic-Num and are thus all of type (Generic-Num;Generic-Num)! Generic-Num.

We also have

(define (negate x) (apply-generic 'negate x))

(define (=zero? x) (apply-generic '=zero x))

(define (equ? x y) (apply-generic 'equ? x y))

The negate operation takes a generic number operand and returns a generic number result, and is

thus of type Generic-Num ! Generic-Num. The generic predicate =zero? tests whether a generic

1This will be explained when we come to section 3.3.3 of the Notes.

6.001, Fall Semester, 1996-97|Problem Set 6 3

number is equal to zero and is hence of type Generic-Num ! Sch-Bool, where the type of Sch-Bool

is one of the two Scheme Boolean values true and false. The generic predicate equ? tests whether

two generic number operands are equal and is hence of type (Generic-Num;Generic-Num) !

Sch-Bool.

Using these operations, compound generic operations can be de�ned, such as

(define (square x) (mul x x))

Tutorial Exercise 6.1A What is the type of the generic square operation?

Tutorial Exercise 6.1B Why is square not de�ned as

(define (square x) (apply-generic 'square x))

Tutorial Exercise 6.1C The procedures for the generic operations add, sub, etc. are keyed

by lists of pairs of symbols, e.g., (number number), but the make operation is keyed by just the

symbol number. How does the tag-type system manage to handle this di�erence? Note that the

procedure for the generic negate operation is keyed by a list consisting of a single symbol.

Packages

The code for the generic number system of this problem set has been organized in ps6-code.scm

into groups of related de�nitions labeled as \packages." A package generally consists of all the

procedures for handling a particular type of data, or for handling the interface between packages.

These packages are enclosed in package installation procedures that install internally de�ned proce-

dures in the table operation-table. This ensures there will be no conict if a procedure with the

same name is used in another package, allowing packages to be developed separately with minimal

coordination of naming conventions.

Ordinary numbers

To install ordinary numbers, we must �rst decide how they are to be represented. Since Scheme

already has an elaborate system for handling numbers, the most straightforward thing to do is to

use it, namely, let

RepNum = Sch-Num:

i.e., let the representation for numbers be the underlying Scheme representation. This allows us to

de�ne the methods that handle generic ordinary numbers simply by calling the Scheme primitives

+, -, . . . , as in section 2.5.1. So we can immediately de�ne interface procedures between RepNum's

and the Generic Number System:

6.001, Fall Semester, 1996-97|Problem Set 6 4

;;; the ordinary number package

(define (install-number-package)

(define (tag x)

(attach-tag 'number x))

(define (negate x) (tag (- x)))

(define (zero? x) (= x 0))

(define (add x y) (tag (+ x y)))

(define (sub x y) (tag (- x y)))

(define (mul x y) (tag (* x y)))

(define (div x y) (tag (/ x y)))

(put 'make 'number tag)

(put 'negate '(number) negate)

(put '=zero? '(number) zero?)

(put 'add '(number number) add)

(put 'sub '(number number) sub)

(put 'mul '(number number) mul)

(put 'div '(number number) div)

'done)

The internally de�ned binary procedures add, sub, mul and div that manipulate pairs of ordinary

numbers are of type (RepNum; RN)! (fnumberg � RepNum) = Generic-OrdNum, where number

is the tag attached to the Scheme representation of a number in forming a generic ordinary number.

Tutorial Exercise 6.1D What are the types of the make-number, negate, zero? procedures

that are de�ned internally in the install-number-package procedure?

To install the ordinary number methods in the generic operations table, we evaluate

(install-number-package)

The ordinary number package should provide a means for a user to create generic ordinary numbers,

so we include a user-interface procedure2 of type Sch-Num! (fnumberg � RepNum), namely,

(define (create-number x)

((get 'make 'number) x))

PreLab exercise 6.2A To test the arithmetic equality of its arguments, the generic arithmetic

package includes the equality predicate equ? of type

equ? : (Generic-Num;Generic-Num)! Sch-Bool:

Modify the procedure install-number-package to include a de�nition of an =number? procedure

suitable for installation as a method for equ? to handle generic ordinary numbers. Include the type

of =number? in comments accompanying your de�nition.

2In Exercise 2.78 in the text, the implementation of the type tagging system is modi�ed to maintain the illusion

that generic ordinary numbers have a number tag, without actually attaching the tag to Scheme numbers. This

implementation has the advantage that generic ordinary numbers are represented exactly by Scheme numbers, so

there is no need to provide the user-interface procedure create-number. Note that in Section 2.5.2 following Exercise

2.77, the text implicitly assumes that this revised implementation of tags has been installed. In this problem set we

stick to the straightforward implementation with actual number tags.

6.001, Fall Semester, 1996-97|Problem Set 6 5

Lab exercise 6.2B Install equ? as an operator on numbers in the generic arithmetic package.

Test that it works properly on generic ordinary numbers. In particular, verify that if we de�ne

(define n2 (create-number 2))

(define n4 (create-number 4))

(define n6 (create-number 6))

then the expression

(equ? n4 (sub n6 n2))

is true.

Rational number package

The second piece of the system is a Rational Number package like the one described in section 2.1.1.

However in the package included in the Problem Set, generic arithmetic operations, rather than the

primitive primitive +, -, etc., are used to combine numerators and denominators. This di�erence is

important, because it allows \rationals" whose numerators and denominators are arbitrary generic

numbers, rather than only integers or ordinary numbers. The situation is like that in Section

2.5.3 in which the use of generic operations in add-terms and mul-terms allowed manipulation of

polynomials with arbitrary coe�cients.

We begin by specifying the representation of rationals as pairs of Generic-Num's

RepRat = Generic-Num �Generic-Num

with constructor of type (Generic-Num;Generic-Num) ! RepRat. The procedures that comprise

the Rational Number Package are de�ned within the procedure install-rational-package (see

below).

Note that the internally de�ned make-rat procedure does not attempt to reduce rationals to lowest

terms as in Section 2.1 because gcd makes sense only in certain cases { such as when numerator

and denominator are integers { but we are allowing arbitrary numerators and denominators.

The basic arithmetic procedures within the Rational Number Package, add-rat, Sub-rat, etc., are

of type (RepRat;RepRat)! RepRat.

The rational Package also provides a means for a user to create Generic Rationals by attaching the

tag rational to a RepRat object. Speci�cally the external procedure create-rational (of type

RepRat = (Generic-Num;Generic-Num)! (frationalg � RepRat) = Generic-Rational):

(define (create-rational n d)

((get 'make 'rational) n d))

To install the rational methods in the generic operations table, we evaluate:

(install-rational-package)

where:

6.001, Fall Semester, 1996-97|Problem Set 6 6

;;; the rational number package

(define (install-rational-package)

(define (make-rat n d) (cons n d))

(define (numer x) (car x))

(define (denom x) (cdr x))

(define (add-rat x y)

(make-rat (add (mul (numer x) (denom y))

(mul (denom x) (numer y)))

(mul (denom x) (denom y))))

(define (sub-rat x y)

(make-rat (sub (mul (numer x) (denom y))

(mul (denom x) (numer y)))

(mul (denom x) (denom y))))

(define (mul-rat x y)

(make-rat (mul (numer x) (numer y))

(mul (denom x) (denom y))))

(define (div-rat x y)

(make-rat (mul (numer x) (denom y))

(mul (denom x) (numer y))))

(define (tag x) (attach-tag 'rational x))

(define (make-rational n d) (tag (make-rat n d)))

(define (add-rational x y) (tag (add-rat x y)))

(define (sub-rational x y) (tag (sub-rat x y)))

(define (mul-rational x y) (tag (mul-rat x y)))

(define (div-rational x y) (tag (div-rat x y)))

(put 'make 'rational make-rational)

(put 'add '(rational rational) add-rational)

(put 'sub '(rational rational) sub-rational)

(put 'mul '(rational rational) mul-rational)

(put 'div '(rational rational) div-rational)

'done)

Note the distinction between the internal procedures such as add-rat which create untagged objects

of type RepRat and procedures such as add-rational that create tagged generic rationals.

PreLab Exercise 6.3A Produce expressions that de�ne r2/7 to be the rational number whose

numerator is 2 and whose denominator is 7, and r3 to be the rational number whose numerator is

3 and whose denominator is 1. Assume that the expression

(define rsq (square (sub r2/7 r3)))

is evaluated. Draw a box and pointer diagram that represents rsq.

Tutorial Exercise 6.3B Within the Ordinary Number Package, the internal add procedure

handled the addition operation. The corresponding procedure in the Rational Number Package is

add-rational. Since there are not name conicts between the internally de�ned procedures, why

was it not possible to give this procedure the name add?

6.001, Fall Semester, 1996-97|Problem Set 6 7

PreLab Exercise 6.4A Modify procedure install-rational-package to handle the unary op-

erations negate-rat of type RepRat ! (frationalg�RepRat) = Generic-Rational that negates a

rational and =zero-rat? of type RepRat! Sch-Bool that tests whether a rational number is equal

to zero. Also include a de�nition of an =rational? procedure suitable for installation as a method

allowing generic equ? to handle generic rational numbers. Include the type of =rational? in com-

ments accompanying your de�nition. Include a copy of your modi�ed install-rational-package

procedure with your solutions.

Lab Exercise 6.4B Install equ? as an operator on rationals in the generic arithmetic package.

Test that it works properly on general rational numbers. In particular verify that if

� r1/2 is the rational whose numerator is 1 and whose denominator is 2,

� r1/3 is the rational whose numerator is 1 and whose denominator is 3,

then the expression

(equ? (sub r1 (mul r1/2 r1/3)) (add r1/2 r1/3))

is true.

Operations across Di�erent Types of Numbers At this point all the methods installed in

our system require all operands to have the subtype|all number, or all rational. There are no

methods installed for operations combining operands with distinct subtypes. For example,

(define n3 (create-number 3))

(equ? n3 r3)

will return a \no method" error message because there is no equality method at the subtypes

(number rational). We have not built into the system any connection between the number 3 and

the rational 3=1.

Some operations across distinct subtypes are straightforward. For example, to combine a rational

with a number, n, coerce n into the rational n=1 and combine them as rationals.

PreLab exercise 6.5A Within the Rational Number Package de�ne a procedure

repnum->reprat : RepNum ! RepRat

that coerces the ordinary number n into a rational number whose numerator is the ordinary number

n and whose denominator is the ordinary number 1.

Procedure RRmethod->NRmethod makes it possible to obtain a (RepNum;RepRat) ! T method

from a (RepRat;RepRat)! T method, for any type T :

(define (RRmethod->NRmethod method)

(lambda (num rat)

(method

(repnum->reprat num)

rat)))

6.001, Fall Semester, 1996-97|Problem Set 6 8

PreLab Exercise 6.5B De�ne the corresponding procedure RRmethod->RNmethod that for any

type T can be used to obtain a (RepRat;RepNum) ! T method from a (RepRat;RepRat) ! T

method.

PreLab Exercise 6.5C Using RRmethod->NRmethod, modify the Rational Number Package to

de�ne methods for generic add, sub, mul, and div at argument types (number rational). De�ne

methods for these operations at argument types (rational number). Also de�ne equ? for these

argument types.

Lab exercise 6.5D Install your new methods. Test them on (equ? n3 r3) and

(equ? (sub (add n3 r2/7) r2/7) n3)

Polynomials

The procedure de�ned within the procedure install-polynomial-package (see below) comprise

the main part of the Polynomial Package. Since the number of procedures required to manipulate

polynomials is relatively large, some additional procedures are de�ned \top level" in this problem

set. Within the generic arithmetic system a polynomial is an object with the tag polynomial.

Within the Polynomial Package, a polynomial is speci�ed by its variable and its \termlist". The

representation of a polynomial satis�es the following type equations:

RepPoly = Variable � RepTerms

RepTerms = Empty-Term-List [(RepTerm � RepTerms)

RepTerm = Scheme-NatNum �Generic-Num

where

� Variable is a representation of the variable of the polynomial

� RepTerm is a representation of the terms of the polynomial

� Empty-Term-List corresponds to the empty term list

� (RepTerm� RepTerms) indicates a term joined to a term list

� Scheme-NatNum is a non-negative integer corresponding to the exponent of a term

� Generic-Num is a generic number corresponding to the coe�cient of the term.

Thus a termlist is either empty or consists of one or more terms, where each term includes a

speci�cation of the order of the term and the coe�cient of the term.

6.001, Fall Semester, 1996-97|Problem Set 6 9

Although \termlists" are currently represented using the format preferred for sparse polynomials

as described in Section 2.5.3, the code treats them as abstract data structures, with their own

constructors and selectors, so that a di�erent representation could be used if required.

(define (install-polynomial-package)

(define (tag poly) (attach-tag 'polynomial poly))

(define (make-polynomial var terms)

(tag (make-poly var terms)))

(define (variable? x) (symbol? x))

(define (same-variable? v1 v2)

(and (variable? v1) (variable? v2) (eq? v1 v2)))

(define (add-poly p1 p2)

(if (same-variable? (variable p1) (variable p2))

(make-poly (variable p1)

(add-termlists (term-list p1)

(term-list p2)))

(error "Polys not in same var -- ADD-POLY"

(list p1 p2))))

(define (mul-poly p1 p2)

(if (same-variable? (variable p1) (variable p2))

(make-poly (variable p1)

(mul-termlists (term-list p1)

(term-list p2)))

(error "Polys not in same var -- MUL-POLY"

(list p1 p2))))

(define (add-polynomial p1 p2) (tag (add-poly p1 p2)))

(define (mul-polynomial p1 p2) (tag (mul-poly p1 p2)))

(put 'make 'polynomial make-polynomial)

(put 'add '(polynomial polynomial) add-polynomial)

(put 'mul '(polynomial polynomial) mul-polynomial)

'done)

6.001, Fall Semester, 1996-97|Problem Set 6 10

;;; addition of termlists

(define (add-termlists L1 L2)

(cond ((empty-termlist? L1) L2)

((empty-termlist? L2) L1)

(else

(let ((t1 (first-term L1)) (t2 (first-term L2)))

(cond ((> (order t1) (order t2))

(adjoin-term

t1 (add-termlists (rest-terms L1) L2)))

((< (order t1) (order t2))

(adjoin-term

t2 (add-termlists L1 (rest-terms L2))))

(else

(adjoin-term

(make-term (order t1)

(add (coeff t1) (coeff t2)))

(add-termlists (rest-terms L1)

(rest-terms L2)))))))))

;;; multiplication of termlists

(define (mul-termlists L1 L2)

(if (or (empty-termlist? L1) (empty-termlist? L2))

(make-empty-termlist)

(add-termlists (mul-term-by-all-terms (first-term L1) L2)

(mul-termlists (rest-terms L1) L2))))

;;; create a polynomial

(define (create-polynomial var terms)

((get 'make 'polynomial) var terms))

To implement term lists as data structures we have the constructors

make-empty-termlist : Empty-type! RepTerms

adjoin-term : (RepTerm;RepTerms)! RepTerms,

and selectors

first-term : RepTerms ! RepTerm

rest-terms : RepTerms ! RepTerms

Note that (make-empty-termlist) returns a representation of an \empty"3 termlist.

In this problem set, we modify the de�nition of mul-term-by-all-terms given on P. 206 of the

notes. The new de�nition is

3The Empty-type has no elements. The type statement

make-an-element : Empty-type ! T

indicates that the procedure make-an-element takes no arguments, and evaluating (make-an-element) returns a

value of type T . Such procedures are sometimes called \thunks". There wasn't any special need to use a thunk as

constructor for empty term lists { a constant equal to the empty term list would have served as well (perhaps better?)

{ but it serves as a reminder that term lists are created di�erently than Scheme's lists.

6.001, Fall Semester, 1996-97|Problem Set 6 11

(define (mul-term-by-all-terms t1 tlist)

(map-terms

(lambda (term) (mul-terms t1 term))

tlist))

where

(define (mul-terms t1 t2)

(make-term

(+ (order t1) (order t2))

(mul (coeff t1) (coeff t2))))

PreLab Exercise 6.6A Procedure map-terms applies a procedure to each term in a termlist.

De�ne it.

Tutorial Exercise 6.6B What is the + procedure used to combine the orders of the term argu-

ments to mul-terms rather than the generic add procedure?

PreLab exercise 6.6C De�ne a procedure create-numerical-polynomial which, given a vari-

able name, x, and list of ordinary numbers, returns a generic polynomial in x with the coe�cients

speci�ed by the scheme numbers in the list. To create the numerical polynomial 7x2+3 you would

evaluate the expression

(create-numerical-polynomial 'x '(7 0 3))

Lab exercise 6.6D Evaluate your de�nition of map-terms, thereby completing the de�nition of

multiplication of generic polynomials.

Use create-numerical-polynomial to de�ne p1 to be the generic polynomial

p1(x) = x3 + 5x2 � 2:

Use the generic square operator to compute the square of p1, and the square of its square. Turn

in the the pretty-printed results of the squarings, as computed in lab.

PreLab Exercise 6.7A Add procedures to the Polynomial Number Package that can be used

with the generic operators negate, =zero?, and equ?. Also add procedures so that the sub

operation can handle polynomials.4

4There is also no method for polynomial div, but this is more problematical since polynomials are not closed

under division, e.g., dividing x+ 1 by x
2 yields a rational function

x+ 1

x2

which is not equivalent to any polynomial.

6.001, Fall Semester, 1996-97|Problem Set 6 12

Lab Exercise 6.7B Test your generic negate, sub, and equ? procedures on the expressions

(negate p1), (add p1 (negate p1)), and (equ? (square (sub p1 p1)) (sub p1 p1)).

There are still no methods installed which work with operands of mixed types. This means that

generic arithmetic on polynomials with generic coe�cients of di�erent types is likely to fail. Con-

sider the polynomial p2(z; x) = p1(x)z
2 + 5z + 3 which is de�ned in ps6-ans.scm as:

(define p2

(create-polynomial

'z

(adjoin-term

(make-term 2 p1)

(adjoin-term

(make-term 1 (create-number 5))

(adjoin-term

(make-term 0 (create-number 3))

(make-empty-termlist))))))

Now squaring p2 will generate a \no method" error message, because there is no method for

multiplying the numerical coe�cients 5 and 3 by the polynomial coe�cient p1. A method that

would work in our system would be to represent p2(z; x) as the equivalent polynomial p2(z; x) =

p1(x)z
2+q(x)z+r(x) where q(x) and r(x) are the constant polynomials in x, q(x) = 5 and r(x) = 3.

PreLab Exercise 6.8A Rede�ne p2 so that it can be squared successfully.

Lab exercise 6.8B Use the generic square operator to compute the square of p2 and the square

of the square of p2. Turn in the pretty-printed results of the squarings, as computed in lab.

Polynomial Evaluation

Polynomials are generic numbers on the one hand, but on the other hand, they also describe

functions which can be applied to generic numbers. For example, the polynomial p1(x) = x3+5x2�2

evaluates to 26 when x = 2.

The procedure apply-polynomial can be de�ned as follows

(define (apply-polynomial p generic-number)

(apply-terms

(term-list (contents p))

generic-number))

where, recognizing that a polynomial is implicitly constructed from its terms by addition, we de�ne

6.001, Fall Semester, 1996-97|Problem Set 6 13

(define (apply-terms termlist generic-number)

(if (empty-termlist? termlist)

...

(add)))

(define (apply-term term generic-number)

(mul (coeff term)

(power generic-number (order term))))

(define (power n k)

(if (< k 1)

(create-number 1)

(mul n (power n (- k 1)))))

PreLab Exercise 6.9A Complete the de�nition of apply-terms.

Lab Exercise 6.9B Test your de�nition by applying p1 to �1 and 1=2.

Lab exercise 6.9C If the polynomial x + 1 is substituted for z in p2, the result should be a

polynomial in x. What result do you obtain when you apply p2 to x+ 1? How can you rectify the

situation?

The section on \Feedback" in the Don't Panic manual describes how to send Email from the 6.001

lab. Send your answer bu�er to your tutor. Do this by starting a mail message and using the

Edwin M-x insert-buffer command. Don't forget to include a reply email address (or else put

your name in the message) so that your tutor will know that the message is coming from you.

Collaboration and Pedagogy

Indicate the names of your collaborators, if any, on this assignment. Indicate the source and nature

of any other help you may have received in the problem solutions, including students not in 6.001

and any portions of the subject archives you may have referenced. (Remember, we encourage open

collaboration among 6.001 students.)

