
1
version October 7, 1996, 11:47 P.M.

MASSACHVSETTS INSTITVTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Fall Semester, 1996

Problem Set 7

Issued: Tuesday, 22 October

Due: Friday, 1 November

Tutorial preparation for: Week of October 28

Reading:

� Course notes: through sectino 3.3.3

� code �les world.scm, game.scm (attached to this handout)

Note: The overall object-oriented programming framework will be discussed in lecture on

Thursday, October 24.

The programming assignment for this week explores two ideas: the simulation of a world in which

objects are characterized by collections of state variables, and the use of object-oriented programming

as a technique for modularizing worlds in which objects interact. These ideas are presented in the

context of a simulation, much as might be used by economists, meteorologists, political scientists

or physicists to analyze the complex interactions implied by mathematical models of the real world.

Our system is a cross between these \serious" simulations and the popular simulation games (e.g,

textual adventure games) available on many computers. While playing these games can be quite

fun, programming them can be di�cult if little or no e�ort is put into understanding the system's

design and implementation. It is therefore very important that you adequately study the system

and plan your work before coming to the lab.

Part 1 will help you to master the ideas involved. Part 2 consists of some tutorial exercises that you

should complete before visiting the lab (you may wish to double check them using the machines in

the lab). Part 3 contains a few warm-up exercises to do in the lab. You might do these and check

your understanding of the answers before proceeding to the main lab assignment itself in Part 4.

Part 1: The 6.001 Election Game

The basic idea of a simulation is that the user creates a scenario in an imaginary world inhabited

by various objects with special properties that govern how they interact. The user runs the simula-

tion by creating appropriate (simulated) objects located in appropriate (simulated) locations with

di�ering sets of parameters selected to test a model's ability to predict behavior under di�erent



6.001, Fall Semester, 1996|Problem Set 7 2

conditions. In addition, some objects in the simulation may be under direct user control as the

simulation proceeds. The user issues commands to the computer that have the e�ect of moving the

objects or changing parameters in the imaginary world, such as picking up objects. The computer

simulates the legal moves and rejects illegal ones. For example, it is illegal to move between places

that are not connected (unless you have special powers). If a move is legal, the computer updates

its model of the world and allows the next move to be considered.

Our game takes place in the strange world of U.S. politics. This world is inhabited by politicians,

voters, reporters, and special investigators. In order to get going, we need to establish the structure

of this imaginary world: the objects that exist and the ways in which they relate to each other.

Initially, there are three procedures for creating objects:

(make-city name)

(make-voter city how-influencable talkative?)

(make-politician name city risk-aversion restlessness)

In addition, there are procedures that make people and things, and procedures that install them

in the simulated world. The reason that we need to be able to create people and things separately

from installing them will be discussed in one of the exercises later. For now, we note the existence

of the procedures

(make&install-city name)

(make&install-voter city how-influencable talkative?)

(make&install-politician name city risk-aversion restlessness)

All objects in the system are implemented as message-accepting procedures, as described in lecture

on October 24. In addition to the main objects of the simulation, the �le game.scm de�nes a number

of other types of objects which are needed to construct cities, voters, and politicians. This is

analogous to the \class library" that comes with most object-oriented development environments.

Our simulation initially has two kinds of people: voters and politicians. They have much in common

(in fact, person is exactly what they have in common). We've built our world so that all people are

located somewhere (in a place), but only politicians have names and can move about from place to

place. The behavior of a politician is controlled by two variables (in our imaginary world, anyway):

how much risk-aversion they have (0 means they don't like to take risks, 1 means they take a risk

whenever they can) and their restlessness (a non-negative integer).

Voters are anonymous (they don't have names), but they do have a location. In addition, voters

have two properties: they can be inuenced to a certain extent (rated between 0 { not inuencable

at all and 1 { very easily persuaded) and a boolean that controls how much output they generate

as the game proceeds.

The �le world.scm has code to create a simulated world. It begins by creating objects to represent the

major cities of the United States (Cambridge, Palo Alto, El Paso, Fairbanks, etc.) It then connects

the cities to simulate airplane routes (we used the same techniques that the airlines apparently use:

we selected locations at random and connected them with non-stop ights). In this simulation, we

will just assume that politicians can teleport between cities.

We then create a very complicated type of person, the *the-registrar-of-voters*. This is by far the

most complicated object in our system, but you don't need to worry about how it's built. Just



6.001, Fall Semester, 1996|Problem Set 7 3

notice the messages you can send to it: REGISTER-CANDIDATE, REGISTER-VOTER, ELECTION, plus the usual

messages that any person will accept1.

Finally, we create the voters and the politicians. The number of voters in each city is chosen

somewhat randomly (between 10 and a selectable maximum number). As the voters are created,

they are registered with the *the-registrar-of-voters*. The politicians are scattered around the

cities, with randomly selected restlessness and risk-aversion factors.

After loading game.scm followed by world.scm the simulation is ready to go { we'll get back to that

shortly.

Part 2: Tutorial exercises

Tutorial exercise 1: (a) De�ne a procedure flip (with no parameters) that returns 1 the �rst

time it is called, 0 the second time it is called, 1 the third time, 0 the fourth time, and so on. (b) Now,

de�ne a procedure make-flip that can be used to generate procedures that have the same behavior

as flip from part (a). That is, if we had make-flip for part (a), we could have implemented flip as

(define flip (make-flip)). (c) Draw an environment diagram to illustrate the result of evaluating

the following sequence of expressions:

(define (make-flip) : : :)

(define flip1 (make-flip))

(define flip2 (make-flip))

(flip1) --> value?

(flip2) --> value?

Tutorial exercise 2: Assume that the following de�nitions are evaluated, using the procedure

make-flip from the previous exercise:

(define flip (make-flip))

(define flap1 (flip))

(define (flap2) (flip))

(define flap3 flip)

(define (flap4) flip)

What is the value of each of the following expressions (evaluated in the order shown)?

1Actually, *the-registrar-of-voters* accepts three other messages: tally, merge-results, and

report-results but these aren't part of the object's external interface.



6.001, Fall Semester, 1996|Problem Set 7 4

flap1

flap2

flap3

flap4

(flap1)

(flap2)

(flap3)

(flap4)

flap1

(flap3)

(flap2)

Tutorial exercise 3: Consider the following code very carefully:

(define (get-method message preferred . others)

;; Get the "best" method, assuming objects are ordered from best to

;; worst. GET-METHOD-FROM-OBJECT is in file game.scm.

(define (loop objs)

(let ((method (get-method-from-object message (car objs)))

(rest (cdr objs)))

(if (or (method? method) (null? rest))

method

(loop rest))))

(loop (cons preferred others)))

Write a very short paragraph (no more than four sentences) describing how this code works. You

might look at the notes or past problem sets for examples of good descriptive style; it should be

correct, concise, and complete. Your description should, in particular, explain why it returns method

when (null? rest) is true, even if method isn't really a method.

Tutorial exercise 4: The lab is much easier to do if you have a complete list of the types of

objects and the class structure (which object inherits from which other). Create a sheet with this

information on it, bring it with you, and make a copy for your tutor. There are two ways to prepare

this information, and the choice is yours. The �rst is to draw a table with rows for data types and

columns for messages, with a check mark if an object of the data type can handle the message. You

can alternatively draw a directed graph with data types for nodes, arrows for showing which type



6.001, Fall Semester, 1996|Problem Set 7 5

inherits from which other, and with each data-type indicating the messages it can handle by itself.

In the latter case, the root of the tree would be named-object (with messages NAME, INSTALL, and SAY).

Tutorial exercise 5: Suppose we evaluate the following expressions:

(define taxes (make-mobile-object 'student-money Cambridge))

(ask taxes 'CHANGE-LOCATION WashingtonDC)

At some point in the evaluation of the second expression, the expression

(set! location new-place)

will be evaluated in some environment. Draw an environment diagram, showing the full structure

of taxes at the point where this expression is evaluated. Don't show the details of Cambridge or

WashingtonDC|just assume that Cambridge and WashingtonDC are names de�ned in the global environ-

ment that point o� to some objects that you draw as blobs.

Tutorial exercise 6: Suppose that, in addition to taxes in exercise 5, we de�ne

(define local-taxes (make-mobile-object 'student-money cambridge))

Are taxes and local-taxes the same object (i.e., are they eq?)? What will result if we install taxes

and local-taxes into the same location?

Part 3: Lab Warm-up Exercise

Lab Warm-up 1: Ask the politician test-pol and the city Cambridge for their names (both are

de�ned in world.scm). Write a procedure that takes an object that inherits from (delegates to)

physical-object and returns the name of that object's location. Test it by showing the name of

the city in which the test-pol is located. Turn in the code and a transcript demonstrating that it

works.

Lab Warm-up 2: Before trying out the simulation, let's take a look at it a bit. Notice that

a politician, if it can't understand a message, delegates it to a traveller; and a traveller has a

message TELEPORT which makes it choose a city at random and move there. So, we should be able to

move our politicians around by sending them a TELEPORT message. In our current implementation,

however, politicians are very close-mouthed about their movements. Let's �x that.

Change the code for make-politician so that it will print a single message when it receives a TELEPORT

message. The message should inform us of the politician's location before and after teleportation.

Turn in a listing of the method that implements the change, along with a short transcript showing

that it works. Here's some possible output2:

2If you want to make the exact changes shown here, you will have to think very carefully about how politicians,
travellers, and persons interact. In particular, think about how to get the politician to act like a person when

(s)he speaks but as a mobile-object otherwise. Of course, it's hardly a surprise that it's hard to make a politician

act like a person : : :



6.001, Fall Semester, 1996|Problem Set 7 6

(ask test-pol 'teleport)

At fairbanks : test says -- Teleported from fairbanks to cambridge

;Value: nuf-said

(ask test-pol 'teleport)

At cambridge : test says -- Teleported from cambridge to washingtondc

;Value: nuf-said

In principle, you could run the system by issuing speci�c commands to each of the objects in the

world, but this defeats the intent of the game since that would give you explicit control over all the

objects3. Instead, we will structure our system so that any object can be manipulated automatically

in some fashion by the computer. We do this by creating a list of all the objects to be moved by

the computer and by simulating the passage of time by a special procedure, clock, that sends a

clock-tickmessage to each object in the list.

Di�erent objects in our simulation react di�erently to the passage of time. In our simulation up to

this point, only politicians and cities react to a clock tick.

Lab Warm-up 3: Louis Reasoner claims that having a separate INSTALL method for objects is

unnecessary. He claims that the INSTALLmethod should be called automatically every time an object

is created. For example, Louis proposes that make-politician be modi�ed as follows:

(define (make-politician

name initial-location thrill-seeking restlessness)

(let ((traveller (make-traveller name initial-location))

(ticks-to-go restlessness))

(define politician ;Louis added this line

(lambda (message)

(case message

: : :

(else (get-method message traveller)))))

(ask politician 'INSTALL) ;Louis added this line

politician)) ;Louis added this line

Other make procedures would be modi�ed the same way. Alyssa P. Hacker, however, disagrees. She

says that Louis's implementation would leave "ghost" objects behind when politicians left cities.

Who is right? Provide a brief explanation of your answer.

Lab Warm-up 4: Write a very brief description (less than 3 sentences) describing what a politi-

cian does on each clock tick; be sure to explain what the restlessness argument to make-politician

does. Do the same for a city.

Lab Warm-up 5: Now it's time to run the simulation at full speed for a while. The procedure

run-clock will run the simulation for a speci�ed number of clock ticks. Try running the simulation

for, say, 5 ticks. Then hold an election by evaluating the expression (ask *the-registrar-of-voters*

3Besides, who types faster: you or the computer?



6.001, Fall Semester, 1996|Problem Set 7 7

'ELECTION). The registrar will try to declare a winner, if possible, by polling the voters and attempt-

ing to get undecided voters to select a candidate. If the election is a tie, the registrar will re-run the

vote with just the tied learders. For how many ticks did you have to run the simulation in order to

have a clear winner after only one round of voting? Turn in a transcript of your interaction with

the system4.

Part 4: Lab exercises

When you load the code for problem set 7, the system will load game.scm. We do not expect you to

have to make signi�cant changes in this code, though you may do so if you want to.

The system will also set up a bu�er with world.scm and load it into Scheme. Since the simulation

model works by data mutation, it is possible to get your Scheme-simulated world into an incon-

sistent state while debugging. To help you avoid this problem, we suggest the following discipline:

any procedures you change or de�ne should be placed in your answer �le; any new characters or

objects you make and install should be added to world.scm. This way whenever you change some

procedure you can make sure your world reects these changes by simply re-evaluating the entire

world.scm �le. Finally, to save you from retyping the same scenarios repeatedly|for example, when

debugging you may want to create a new character, move it to some interesting place, then ask it

to act|we suggest you de�ne little test \script" procedures at the end of world.scm which you can

invoke to act out the scenarios when testing your code. See the comments in world.scm for details.

Lab exercise 1: Meta-adventure You can inspect an environment structure using the show

procedure from game.scm. Show is a bit like the pp procedure you have used in the past for printing

out procedures, but it prints things out so that they look more like parts of an environment diagram.

It can be used like this:

(show cambridge)

#[compound-procedure 40]

Frame:

#[environment 41]

Body:

(lambda (message)

(cond ((eq? message 'clock-tick) (lambda ... ...))

((eq? message 'install) (lambda ... ... ...))

((eq? message 'sponsor-debate) (lambda ... ...))

...))

Now you can inspect the environment of the procedure by calling show with the `hash number' of

the environment (41, in this example). The hash number is the number after `compound-procedure'

or `environment' in the usual printed representations of these objects. The system guarantees that

all di�erent (i.e. non-eq?) objects have di�erent hash numbers so you can tell if you get back to the

same place.

4This is intended to be easy { just run the simulation and see what happens. Don't try to analyze your result or

�nd a repeatable answer to this question!



6.001, Fall Semester, 1996|Problem Set 7 8

(show 41)

#[environment 41]

Parent frame: #[environment 42]

place: #[compound-procedure 43]

Here we see that the environment frame that is part of the procedure cambridge has one variable

de�ned in it (place) and, of course, has a parent frame (number 42).

This exercise is called meta-adventure because you are going to use the show procedure to explore

and `map' the environment structure for cambridge and produce an environment diagram.

Start with cambridge and follow all the hash numbers except those of other cities, politicians, or

voters (just show their names). There should be about 10 things to show. Print out the results

and cut out the individual results. Arrange the pieces on a large blank piece of paper so that they

are in the correct positions to make an environment diagram. Glue the pieces in place and draw in

the arrows to make a complete environment diagram. Turn in your diagram.

Warning: The environment in this game can get very large in a hurry. Thus we strongly suggest

that you start with a clean Scheme system, and just load game.scm and world.scm, then answer this

question.

Adding to our world

We are now ready to start modifying our simulated world, in order to explore the interactions

between di�erent kinds of objects. We are �rst going to add a type of person called a reporter to

our world. The idea behind a reporter is that he/she can interview a candidate to get a sound

bite, which can then be broadcast to the voters. If you look at the code for make-politician you

will see that the connection is already there to have a reporter do the interview, so let's look into

creating the reporter.

The �le report.scm contains the following template for creating a reporter.

(define make-reporter

(lambda (voting-location noisy?)

(define (reporter message)

(case message

((REPORTER?) (lambda (self) true))

((INSTALL)

(lambda (self)

...))

((INTERVIEW)

...)

(else (get-method message person))))

reporter)))

(define (make&install-reporter voting-location noisy?)

(make&install-object make-reporter voting-location noisy?))



6.001, Fall Semester, 1996|Problem Set 7 9

Lab exercise 2: Write the code for INSTALL. In principle, this should just involve asking the

location of the reporter to add the reporter object to the list of things in that location. However,

we can be more careful, by observing that a reporter is just a special kind of person. Thus,

you should be able to modify the template to create a person object, perhaps with the name

anonymous-reporter, in the same location, then use delegation to the person object to install the

reporter. Turn in your implementation of the INSTALLmethod. Be sure to complete the default case

of the template to handle inheritance of other behaviors.

Lab exercise 3: Write and turn in the code for INTERVIEW. This should connect to the method

within a politician for conducting an interview. The method should allow the reporter and the

politician to engage in a brief dialogue, creating a campaign \sound bite". One way to do this is to

create a global list of witty sayings, and have the politician select one of those sayings at random.

Once you have done this, you can install a set of reporters by using some code that we have

provided, in particular by evaluating:

(populate-reporters 2 *all-real-places*)

Inheriting Behavior by Delegating Messages

With the basic code for creating a reporter in place, we can turn to questions of how reporters �t

into the object framework. If you think about it carefully you will realize that a reporter can also

be a voter.

Lab exercise 4: Modify the reporter code you created above so that it can handle all of the

messages sent to either a person or to a voter. Don't forget to modify the INSTALL handler (method)

you wrote so that it installs any new objects that it creates. Turn in a listing of your changes.

Lab exercise 5: You have probably realized by now that just creating a reporter and having

him/her interact with a politician has not e�ect on the voters. We need to connect their behavior

with the voters. This means that we need to modify a voter object to handle the WATCH-SOUNDBITE

message. Add such a method. You can select the details, but the behavior of the method should

include the following:

� If the voter is undecided, then he should reconsider the politician who generated the sound

bite with some probability.

� If the voter is already supporting the politician, then he should become less inuencable.

� If the voter is supporting someone else, then he should become more inuencable, and should

reconsider this politician with some probability.

Be sure to have the voter engage in some dialogue as part of this.

Once you have made the changes to the make-voter procedure, reload the world, and test your code.



6.001, Fall Semester, 1996|Problem Set 7 10

Lab exercise 6: The implementation of reporters is now complete. You should test it by writing

a script which will create a set of reporters, and then just let the clock tick for some number of

trials, before trying an election. Turn in your script and a transcript that shows it working. Run

a few tests of your own, too, just to make sure that everything is working OK.

Adding other kinds of objects

Now, let's try adding a slightly more complicated object, a PACster, or Political Action Committee

activist. The �le pacster.scm contains a template for creating such objects.

(define (make-pacster name initial-location restlessness candidate)

(let ((traveller (make-traveller name initial-location))

(ticks-to-go restlessness))

(lambda (message)

(case message

((PACSTER?) (lambda (self) true))

((CLOCK-TICK)

(lambda (self) ...

))

((TRAVEL)

(lambda (self)

(ask self 'TELEPORT)))

((INSTALL)

(lambda (self)

(delegate traveller self 'INSTALL)

(add-to-clock-list self)))

((GREASE)

(lambda (self)

...))

(else (get-method message traveller))))))

(define (make&install-pacster name initial-location restlessness candidate)

(make&install-object

make-pacster name initial-location restlessness candidate))

The behavior of the PACster should be as follows. The PACster is a mobile object, that can move

from place to place. Thus, when the PACster gets restless enough, he TRAVELS. When he is not

travelling, the PACSter engages in GREASE. This means that a random sampling of voters at the

PACster's current location should be selected and asked to take a BRIBE.

Lab Exercise 7: Complete the above described methods in the template for a PACster. Turn

in a listing of your code.

Lab Exercise 8: Modify the code to make voter objects, to handle the taking of a BRIBE. The

kinds of behaviors to support are similar to those for watching a sound bite. Turn in a listing of

your code.



6.001, Fall Semester, 1996|Problem Set 7 11

Lab Exercise 9: To install some PACsters, we need to connect them with their candidates. Try

evaluating the following code to do this.

(for-each make&install-pacster

'(a-pac b-pac c-pac d-pac e-pac f-pac g-pac h-pac i-pac j-pac k-pac)

(list Cambridge Cambridge Cambridge PaloAlto PaloAlto

Denver Denver Denver Denver Kalamazoo)

(list 5 2 3 1 5 6 2 5 3 4 6)

*all-politicians*)

Reload your world, and try running a simulation involving reporters, voters, PACsters and politi-

cians. Turn in a transcript showing the behavior of your objects.

Lab Exercise 10: Design and add some other object to this world. You can be as inventive as

you like in doing this. Some examples might include a special investigator (we've actually left some

hooks for this object in the code) who investigates candidates, with some e�ect on the voters; or a

pollster who samples the current voters and reports on the latest trends, or something else. Turn

in a listing of your code, and an example transcript of the system interacting with your additions.

Have fun. It's a presidential election year!

Part 5: Contest

Prizes will be awarded for the cleverest ideas turned in for this last problem.


