
1
version November 5, 1996, 11:46 A.M.

MASSACHVSETTS INSTITVTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Fall Semester, 1996

Problem Set 8

Scheme Evaluators

Issued: Tuesday, October 29, 1996

Due: Friday, November 8, 1996

Tutorial preparation for: Week of November 4, 1996

Reading: Chapter 4 through section 4.2.2; attached code �les meval.scm, analyze.scm,

evdata.scm, syntax.scm, ps8defs.scm.

You will be working with two of the evaluators as described in Chapter 4 of the notes. If you

don't have a good understanding of how the evaluators are structured, it is very easy to become

confused between the programs that the evaluator is interpreting, the procedures that implement

the evaluator itself, and Scheme procedures called by the evaluator. You will need to have carefully

studied Chapter 4 through subsection 4.2.2 in order to do this assignment.

Because the main meta-circular evaluator will be presented in lecture on October 31, and the

analyze evaluator will be presented in lecture on November 5, we have designed this problem set

in two parts, one on each evaluator. We strongly encourage you to start the problem set as soon

as you can, and not to wait until the analyze evaluator is covered in lecture before starting work

on the parts of the problem set dealing with meta-circular evaluator.

Tutorial exercises Do exercises 4.6, 4.7, and 4.11.

Using the Evaluators

The code for problem set 8 includes these �les:

� meval.scm is the metacircular evaluator described in section 4.1.1 of the notes. It has been

extended to allow declarations of lazy procedure parameters, as described in section 4.2 and

exercise 4.31. In order to avoid confusing the eval and apply of this evaluator with the eval

and apply of the underlying Scheme system, we have renamed these procedures meval and

m-apply.



6.001, Fall Semester, 1996|Problem Set 8 2

� analyze.scm is the analyze evaluator of section 4.1.7, extended to allow declarations of lazy

procedure parameters, as described in section 4.2 and exercise 4.31.

� evdata.scm contains the procedures that de�ne the evaluator's data structures, as in section

4.1.3. In order to interface the evaluator to the underlying Scheme system, we have made the

modi�cation outlined in the text, namely, any variable that is not found in the evaluator's

global environment will be looked up in the underlying Scheme; Scheme procedures found in

this way will treated by the evaluator as primitive procedures. Programs being executed by

the metacircular evaluator can therefore make use of any procedure (primitive or compound)

which may be de�ned in your Scheme environment.

� syntax.scm contains the procedures that de�ne the syntax of expressions, as described in

section 4.1.2.

You'll be switching back and forth between both of these evaluators. The two evaluators use

the same implementation of environment data structures. This arrangement requires that you

reinitialize the evaluator's environment when you switch from one to the other. Here's how to

manage this:

� To start up, do

M-x load-problem-set: 8

in Edwin. This loads the �les syntax.scm, evdata.scm, meval.scm, and analyze.scm. Then

evaluate (start-meval) in Scheme; this starts the read-eval-print loop for the meta-circular

evaluator with a freshly initialized global environment.

� To evaluate an expression, you may type the expression into the *scheme* bu�er followed

by ctrl-x ctrl-e. (Don't use M-z to evaluate the expression in the *scheme* bu�er|the

presence of the evaluator prompts confuses the M-zmechanism. But M-z works �ne for sending

expressions to the *scheme* bu�er from other Scheme-mode bu�ers.)

We've arranged that each read-eval-print loop identi�es itself by its input and output prompts.

For example,

MEVAL=> (+ 3 4)

;;M-value: 7

shows an interaction with the meval evaluator.

� You should keep in a separate �le any procedure de�nitions you want to install in an evaluator.

If your Edwin Scheme bu�er is running the read-eval-print loop of an evaluator, you can

then visit this de�nitions �le and type M-o to enter the de�nitions into the evaluator. To

get you started, we have included an alternative implementation of lazy lists in the bu�er

ps8defs.scm.

� You can interrupt an evaluator by typing ctrl-c ctrl-c. To restart it with the recent

de�nitions still intact, evaluate (eval-loop).

� To start a read-eval-print loop for the analyzing evaluator in a fresh global environment,

return to Scheme and evaluate (start-analyze).



6.001, Fall Semester, 1996|Problem Set 8 3

� The evaluators you are working with do not include error systems. If you hit an error you

will bounce back into ordinary Scheme. You can restart the current evaluator, with its global

environment still intact, by evaluating (eval-loop).

� The variable current-evaluator is de�ned as an alias for the current evaluator in each of

the �les meval.scm and analyze.scm. This should ensure that current-evaluator will be

bound to the most recently started evaluator at all times during your lab session.

� It can be instructive to trace current-evaluator, m-apply, and/or exapply during evaluator

executions. (You will also probably need to do this while debugging your code for this

assignment.)

� Since environments are generally complex, circular list structures, we have set Scheme's

printer so that it will not go into an in�nite loop when asked to print a circular list. This was

done by

(set! *unparser-list-depth-limit* 7)

(set! *unparser-list-breadth-limit* 10)

at the end of the �le evdata.scm. You may want to alter the values of these limits to vary

how much list structure will be printed as output.

Lab exercises

As usual, for all the lab exercises below, you should turn in listings of any procedures you de�ne

in your solutions, as well as sample evaluations demonstrating their correct behavior.

Lab exercise 1: Start the meval evaluator and evaluate a few simple expressions and de�nitions.

It's a good idea to make an intentional error and practice restarting the read-eval-print loop. Notice

that we have already installed let in the evaluator, so you can use this in your programs. Turn in

a transcript of your examples.

Adding Language Constructs

Pre-Lab exercise 2A: Lazy parameter declarations are already supported by both the meval

and analyze evaluators supplied to you. Suppose we are given some �xed n � 0. With lazy

parameters, it is possible to de�ne within an evaluator an n-argument procedure, or-proc, that

yields the same results as the Scheme special form or when it is used with n subforms. That is,

(or E1 ...En) in Scheme, and (or-proc E1 ...En) in an evaluator, should produce exactly

the same results (including side-e�ects) for any expressions E1 : : :En. Outline how to de�ne the

n-argument or-proc within our evaluators.

Lab exercise 2B: Evaluate the de�nition of a three-argument or-proc in the meval.



6.001, Fall Semester, 1996|Problem Set 8 4

Lab exercise 3: Since our evaluators do not yet have the ability to de�ne procedures with varying

numbers of arguments, we can't add the general or construct with the approach of Exercise 2. So

instead, add or as a special form to the meta-circular evaluator.

We can also extend the evaluators to handle Scheme's convention for de�ning procedures with

varying numbers of arguments. For example, an abstraction of the form (lambda (x y . z) ...)

de�nes a procedure of two or more arguments, in which the value of the �rst argument would be

bound to x, the value of the second to y, and a list consisting of the values of any further arguments

would be bound to z. If, instead of z, we had (w lazy), then a list consisting of the delayed values

of any further arguments would be bound to w. Similarly, if (w lazy-memo) appears instead of z,

this indicates that a list consisting of the memoized delayed values of any further arguments would

be bound to w.

We accomplish the extension by modifying the procedure process-arg-procs in the �le evdata.scm1.

As written, (process-arg-procs params aprocs env) expects params and aprocs to be lists of

equal length, and it returns a list of parameter values of the same length. If params is not a

list of parameter declarations, but instead ends with a dotted pair of parameters, then we want

process-arg-procs to return a list of values in which the last value is itself a list of all the "extra"

values, possibly all delayed or all memoized depending on whether the �nal parameter is declared

to be lazy or memoized. For example,

((lambda (x y . (w lazy)) (list x y (car w)))

1 2 (if #t 3 4) (print "this should not print"))

will return (1 2 3), without printing anything. This is because in the application, the variable x

will be bound to 1, variable y will be bound to 2, and variable w will be bound to the list consisting

of the delayed values of

(if #t 3 4)

and

(print "this should not print").

The �rst delayed value gets forced when the primitive procedure list is applied to it. The second

delayed value is not ever forced, so no printing occurs.

So we revise process-arg-procs to reformat its arguments if necessary, after which it proceeds as

before:

(define (process-arg-procs params aprocs env)

(let ((params (undot params))

(aprocs (matchup-args params aprocs)))

(map (lambda (param aproc)

(cond ((variable? param) (aproc env))

((lazy? param) (delay-it aproc env))

((memo? param) (delay-it-memo aproc env))

(else (error "Unknown declaration" param))))

params

aprocs)))

1The procedure parameter-names in syntax.scm must also be written to handle the dotted-pair form of parame-

ters, but we have done this already.



6.001, Fall Semester, 1996|Problem Set 8 5

The procedure matchup-args has the task of taking the list of arguments and returning the list

with all the "extra" arguments put into a single list at the end. But at this point each argument

in the input list is actually packaged as an "argument procedure." The argument procedure will

yield the argument value when it is applied to the environment. So matchup-args actually has to

create a similar package which yields the list of extra argument values when it is applied to the

environment.

(define (matchup-args params aprocs)

(cond

((null? params)

(if (null? aprocs)

'()

(error "matchup-args: too many args" aprocs)))

((or (variable? params) (declaration? params))

(list (make-list-package params aprocs)))

((null? aprocs)

(error "matchup-args: too few args" params))

(else (cons

(car aprocs)

(matchup-args (cdr params) (cdr aprocs))))))

(define (make-list-package formal aprocs)

(lambda (env)

(map

(cond ((variable? formal)

(lambda (aproc) (aproc env)))

((lazy? formal)

(lambda (aproc) (delay-it aproc env)))

((memo? formal)

(lambda (aproc) (delay-it-memo aproc env))))

aprocs)))

(define (undot params)

<blob6a>)

Lab exercise 4A: Complete the de�nition of <blob6a>, insert these de�nitions in the �le

evdata.scm and reload the �le into Scheme. You will �nd a copy of the above de�nitions in

bu�er ps8-ans.scm.

Lab exercise 4B: Now we can add, as a procedure, a genuine or construct to the evaluators.

Namely,

(define or (lambda (l lazy) (or-lproc l)))

where or-lproc is a procedure that takes as its argument a single list2 of delayed values. Give the

2Both lazy and lazy-memo are now speci�ed to be keywords. This prevents misreading (lambda (l lazy) ...)

as a procedure with two formals, l and lazy. Rather, it is a procedure which may be applied to zero or more

arguments|all of which will be delayed.



6.001, Fall Semester, 1996|Problem Set 8 6

de�nition of or-lproc.

Even with lazy and varying numbers of parameters, not all language facilities can be de�ned

as Scheme procedures. An example is the special form (while <var> <init> <test> <inc>

<body>) where <var> is a variable, the value of <init> is an initial value for the variable, <test>

is an expression that will be evaluated to determine termination of the loop, and <inc> is anb

expression that will be evaluated to determine the next value of the variable. Evaluation of this

expression causes <body> to be repeatedly evaluated as <var> is successively incremented until

the test no longer holds true. More precisely, (while <var> <init> <test> <inc> <body>) is

syntactic sugar for3

(let ()

(define (loop <var>)

(if <test>

(begin

<body>

(loop <inc>))

the-unspecified-value))

(loop <init>))

For example, we might evaluate something like (while i 0 (< i 10) (+ i 1) <body>).

Lab exercise 5A: Add the while construct as a special form (not as syntactic sugar like let or

cond) to the meta-circular evaluator.

Lab exercise 5B: Show an example of evaluation of a while loop.

The Analyzing Evaluator

Lab exercise 6A: Start the meval evaluator and evaluate a few simple expressions and de�ni-

tions.

Lab exercise 6B: Now start the analyzing evaluator. You can tell that you are typing at the

analyzing evaluator because the prompt will be AEVAL=> rather than MEVAL=>. Evaluate the same

simple expressions and de�nitions you did in Exercise 6A.

Lab exercise 6C: Start the meta-circular evaluator again. Now trace evaluation of the applica-

tion of some simple procedure to some argument.

Ben Bitdiddle thinks it is silly to reinitialize the environment every time he switches from one eval-

uator to the other. So, after having run the meta-circular evaluator, he revises the start-analyze

procedure so it does not reinitialize the global environment:

3We're assuming that the local variable loop is not eq? to <var>, <inc>, <init> or any variable free in <body>.



6.001, Fall Semester, 1996|Problem Set 8 7

(define (start-analyze)

(set! current-evaluator (lambda (exp env) ((analyze exp) env)))

(set! current-prompt "AEVAL=> ")

(set! current-value-label ";;A-value: ")

; (init-env) ;Ben comments-out this line

(eval-loop))

He reasons that now, if he types (start-analyze), the de�nitions he already evaluated in the

meta-circular evaluator will be available to the analyzing evaluator. Eva Lu Ator agrees that the

de�nitions of the meta-circular evaluator will indeed be available to the analyzing evaluator, but

that this will usually crash the system rather then being helpful.

Lab exercise 7A: Try Ben's suggestion and observe what Eva Lu Ator meant.

Post-Lab exercise 7B: Brie
y, but clearly, explain what goes wrong with Ben's suggestion. Are

there any de�nitions it would be safe to preserve when switching between evaluators?

Comparing evaluation speeds

This next problem asks you to demonstrate the improved e�ciency of the analyzing evaluator over

the meta-circular one.

To time things, you can use the procedure show-time, which you used in Problem Set 2. Thus, for

example, you can �nd out how long it takes the evaluator to evaluate (fib 10) by quitting out of

the evaluator and evaluating

(show-time (lambda() (current-evaluator '(fib 10) the-global-environment)))

in Scheme. Be careful to de�ne the procedure you are timing, e.g., fib, in the evaluator, not

in ordinary Scheme! Otherwise, you'll end up timing the underlying Scheme interpreter. This is

because of the way we've linked the evaluator into Scheme: if you de�ne fib in Scheme, and not in

the evaluator's global environment, lookup-variable-value will �nd the Scheme procedure fib

and m-apply will treat this as a primitive.

Lab exercise 8A: Design and carry out an experiment to compare the speeds of the meval and

analyze evaluators on some procedures. Use tests that run for a reasonable amount of time (say

10 or 20 seconds). It may be helpful to use test procedures for which small changes in the input

cause large changes in running time, so you can rapidly increase the time by increasing the input.

Summarize what you observe about the relative speeds of the two evaluators on your test programs.

Lab exercise 8B (Optional|Extra Credit): See if you can �nd an example where the inter-

preters run for at least �ve seconds and the analyze evaluator runs no more than 1.5 times the

speed of meval.



6.001, Fall Semester, 1996|Problem Set 8 8

Lab exercise 9 Repeat the process of adding or as a special form to the analyze evaluator (that

is, do Exercises 2, 3 and 4 again but for the analyze evaluator).

Lab and Post-Lab exercise 10 (Optional): The evaluators are not quite powerful enough to

evaluate themselves. That is, it doesn't quite work to evaluate all the meval de�nition �les within

the MEVAL read-eval-print loop, and then to apply meval as a procedure de�ned within the MEVAL

evaluator. You may want to try this to see what happens.

Discuss what further features or de�nitions would be required in order to successfully run the

evaluators within themselves and/or within each other.


